Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,551 Bytes
38e20ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# -*- coding: utf-8 -*-
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# Using this computer program means that you agree to the terms
# in the LICENSE file included with this software distribution.
# Any use not explicitly granted by the LICENSE is prohibited.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# For comments or questions, please email us at deca@tue.mpg.de
# For commercial licensing contact, please contact ps-license@tuebingen.mpg.de
import torch
import torch.nn as nn
import numpy as np
np.bool = np.bool_
np.int = np.int_
np.float = np.float_
np.complex = np.complex_
np.object = np.object_
np.unicode = np.unicode_
np.str = np.str_
import pickle
import torch.nn.functional as F
from .lbs import lbs, batch_rodrigues, vertices2landmarks, rot_mat_to_euler
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
class FLAME(nn.Module):
"""
borrowed from https://github.com/soubhiksanyal/FLAME_PyTorch/blob/master/FLAME.py
Given flame parameters this class generates a differentiable FLAME function
which outputs the a mesh and 2D/3D facial landmarks
"""
def __init__(self, flame_model_path='pretrained_models/FLAME/generic_model.pkl',
flame_lmk_embedding_path='pretrained_models/FLAME/landmark_embedding.npy', n_shape=300, n_exp=50):
super(FLAME, self).__init__()
with open(flame_model_path, 'rb') as f:
ss = pickle.load(f, encoding='latin1')
flame_model = Struct(**ss)
self.n_shape = n_shape
self.n_exp = n_exp
self.dtype = torch.float32
self.register_buffer('faces_tensor', to_tensor(to_np(flame_model.f, dtype=np.int64), dtype=torch.long))
# The vertices of the template model
print('Using generic FLAME model')
self.register_buffer('v_template', to_tensor(to_np(flame_model.v_template), dtype=self.dtype))
# The shape components and expression
shapedirs = to_tensor(to_np(flame_model.shapedirs), dtype=self.dtype)
shapedirs = torch.cat([shapedirs[:,:,:n_shape], shapedirs[:,:,300:300+n_exp]], 2)
self.register_buffer('shapedirs', shapedirs)
# The pose components
num_pose_basis = flame_model.posedirs.shape[-1]
posedirs = np.reshape(flame_model.posedirs, [-1, num_pose_basis]).T
self.register_buffer('posedirs', to_tensor(to_np(posedirs), dtype=self.dtype))
#
self.register_buffer('J_regressor', to_tensor(to_np(flame_model.J_regressor), dtype=self.dtype))
parents = to_tensor(to_np(flame_model.kintree_table[0])).long(); parents[0] = -1
self.register_buffer('parents', parents)
self.register_buffer('lbs_weights', to_tensor(to_np(flame_model.weights), dtype=self.dtype))
self.register_buffer('l_eyelid', torch.from_numpy(np.load(f'pretrained_models/smirk/l_eyelid.npy')).to(self.dtype)[None])
self.register_buffer('r_eyelid', torch.from_numpy(np.load(f'pretrained_models/smirk/r_eyelid.npy')).to(self.dtype)[None])
# import pdb;pdb.set_trace()
# Fixing Eyeball and neck rotation
default_eyball_pose = torch.zeros([1, 6], dtype=self.dtype, requires_grad=False)
self.register_parameter('eye_pose', nn.Parameter(default_eyball_pose,
requires_grad=False))
default_neck_pose = torch.zeros([1, 3], dtype=self.dtype, requires_grad=False)
self.register_parameter('neck_pose', nn.Parameter(default_neck_pose,
requires_grad=False))
# Static and Dynamic Landmark embeddings for FLAME
lmk_embeddings = np.load(flame_lmk_embedding_path, allow_pickle=True, encoding='latin1')
lmk_embeddings = lmk_embeddings[()]
self.register_buffer('lmk_faces_idx', torch.from_numpy(lmk_embeddings['static_lmk_faces_idx']).long())
self.register_buffer('lmk_bary_coords', torch.from_numpy(lmk_embeddings['static_lmk_bary_coords']).to(self.dtype))
self.register_buffer('dynamic_lmk_faces_idx', lmk_embeddings['dynamic_lmk_faces_idx'].long())
self.register_buffer('dynamic_lmk_bary_coords', lmk_embeddings['dynamic_lmk_bary_coords'].to(self.dtype))
self.register_buffer('full_lmk_faces_idx', torch.from_numpy(lmk_embeddings['full_lmk_faces_idx']).long())
self.register_buffer('full_lmk_bary_coords', torch.from_numpy(lmk_embeddings['full_lmk_bary_coords']).to(self.dtype))
neck_kin_chain = []; NECK_IDX=1
curr_idx = torch.tensor(NECK_IDX, dtype=torch.long)
while curr_idx != -1:
neck_kin_chain.append(curr_idx)
curr_idx = self.parents[curr_idx]
self.register_buffer('neck_kin_chain', torch.stack(neck_kin_chain))
lmk_embeddings_mp = np.load("pretrained_models/smirk/mediapipe_landmark_embedding.npz")
self.register_buffer('mp_lmk_faces_idx', torch.from_numpy(lmk_embeddings_mp['lmk_face_idx'].astype('int32')).long())
self.register_buffer('mp_lmk_bary_coords', torch.from_numpy(lmk_embeddings_mp['lmk_b_coords']).to(self.dtype))
def _find_dynamic_lmk_idx_and_bcoords(self, pose, dynamic_lmk_faces_idx,
dynamic_lmk_b_coords,
neck_kin_chain, dtype=torch.float32):
"""
Selects the face contour depending on the reletive position of the head
Input:
vertices: N X num_of_vertices X 3
pose: N X full pose
dynamic_lmk_faces_idx: The list of contour face indexes
dynamic_lmk_b_coords: The list of contour barycentric weights
neck_kin_chain: The tree to consider for the relative rotation
dtype: Data type
return:
The contour face indexes and the corresponding barycentric weights
"""
batch_size = pose.shape[0]
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
rel_rot_mat = torch.eye(3, device=pose.device,
dtype=dtype).unsqueeze_(dim=0).expand(batch_size, -1, -1)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords
def _vertices2landmarks(self, vertices, faces, lmk_faces_idx, lmk_bary_coords):
"""
Calculates landmarks by barycentric interpolation
Input:
vertices: torch.tensor NxVx3, dtype = torch.float32
The tensor of input vertices
faces: torch.tensor (N*F)x3, dtype = torch.long
The faces of the mesh
lmk_faces_idx: torch.tensor N X L, dtype = torch.long
The tensor with the indices of the faces used to calculate the
landmarks.
lmk_bary_coords: torch.tensor N X L X 3, dtype = torch.float32
The tensor of barycentric coordinates that are used to interpolate
the landmarks
Returns:
landmarks: torch.tensor NxLx3, dtype = torch.float32
The coordinates of the landmarks for each mesh in the batch
"""
# Extract the indices of the vertices for each face
# NxLx3
batch_size, num_verts = vertices.shape[:dd2]
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
1, -1, 3).view(batch_size, lmk_faces_idx.shape[1], -1)
lmk_faces += torch.arange(batch_size, dtype=torch.long).view(-1, 1, 1).to(
device=vertices.device) * num_verts
lmk_vertices = vertices.view(-1, 3)[lmk_faces]
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
return landmarks
def seletec_3d68(self, vertices):
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(vertices.shape[0], 1),
self.full_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
return landmarks3d
def get_landmarks(self, vertices):
"""
Input:
shape_params: N X number of shape parameters
expression_params: N X number of expression parameters
pose_params: N X number of pose parameters (6)
return:d
vertices: N X V X 3
landmarks: N X number of landmarks X 3
"""
batch_size = vertices.shape[0]
template_vertices = self.v_template.unsqueeze(0).expand(batch_size, -1, -1)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain, dtype=self.dtype)
lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)
landmarks2d = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
bz = vertices.shape[0]
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(bz, 1),
self.full_lmk_bary_coords.repeat(bz, 1, 1))
return vertices, landmarks2d, landmarks3d
def forward(self, param_dictionary, zero_expression=False, zero_shape=False, zero_pose=False):
shape_params = param_dictionary['shape_params']
expression_params = param_dictionary['expression_params']
pose_params = param_dictionary.get('pose_params', None)
jaw_params = param_dictionary.get('jaw_params', None)
eye_pose_params = param_dictionary.get('eye_pose_params', None)
neck_pose_params = param_dictionary.get('neck_pose_params', None)
eyelid_params = param_dictionary.get('eyelid_params', None)
batch_size = shape_params.shape[0]
# Adjust expression params size if needed
if expression_params.shape[1] < self.n_exp:
expression_params = torch.cat([expression_params, torch.zeros(expression_params.shape[0], self.n_exp - expression_params.shape[1]).to(shape_params.device)], dim=1)
if shape_params.shape[1] < self.n_shape:
shape_params = torch.cat([shape_params, torch.zeros(shape_params.shape[0], self.n_shape - shape_params.shape[1]).to(shape_params.device)], dim=1)
# Zero out the expression and pose parameters if needed
if zero_expression:
expression_params = torch.zeros_like(expression_params).to(shape_params.device)
jaw_params = torch.zeros_like(jaw_params).to(shape_params.device)
if zero_shape:
shape_params = torch.zeros_like(shape_params).to(shape_params.device)
if zero_pose:
pose_params = torch.zeros_like(pose_params).to(shape_params.device)
pose_params[...,0] = 0.2
pose_params[...,1] = -0.7
if pose_params is None:
pose_params = self.pose_params.expand(batch_size, -1)
if eye_pose_params is None:
eye_pose_params = self.eye_pose.expand(batch_size, -1)
if neck_pose_params is None:
neck_pose_params = self.neck_pose.expand(batch_size, -1)
betas = torch.cat([shape_params, expression_params], dim=1)
full_pose = torch.cat([pose_params, neck_pose_params, jaw_params, eye_pose_params], dim=1)
# import pdb;pdb.set_trace()
template_vertices = self.v_template.unsqueeze(0).expand(batch_size, -1, -1)
vertices, _ = lbs(betas, full_pose, template_vertices,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, dtype=self.dtype)
# import pdb;pdb.set_trace()
if eyelid_params is not None:
vertices = vertices + self.r_eyelid.expand(batch_size, -1, -1) * eyelid_params[:, 1:2, None]
vertices = vertices + self.l_eyelid.expand(batch_size, -1, -1) * eyelid_params[:, 0:1, None]
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain, dtype=self.dtype)
lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)
landmarks2d = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
bz = vertices.shape[0]
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(bz, 1),
self.full_lmk_bary_coords.repeat(bz, 1, 1))
landmarksmp = vertices2landmarks(vertices, self.faces_tensor,
self.mp_lmk_faces_idx.repeat(vertices.shape[0], 1),
self.mp_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
return {
'vertices': vertices,
'landmarks_fan': landmarks2d,
'landmarks_fan_3d': landmarks3d,
'landmarks_mp': landmarksmp
}
|