File size: 46,645 Bytes
2fa8624 a3c0569 2fa8624 d31b448 2fa8624 286a3b0 2fa8624 a3c0569 7795b80 2fa8624 286a3b0 0ec90f6 2fa8624 d31b448 7795b80 2fa8624 d31b448 7795b80 0ec90f6 7795b80 a3c0569 2fa8624 a3c0569 bc4f223 2fa8624 bc4f223 a3c0569 0ec90f6 a3c0569 2b85024 2fa8624 a3c0569 2fa8624 0ec90f6 286a3b0 2b85024 286a3b0 0ec90f6 2fa8624 0ec90f6 286a3b0 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 7795b80 2fa8624 a3c0569 0ec90f6 7795b80 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 7795b80 a3c0569 2fa8624 7795b80 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 7795b80 2fa8624 a3c0569 2fa8624 2b85024 2fa8624 2b85024 7795b80 2b85024 2fa8624 2b85024 2fa8624 7795b80 2fa8624 286a3b0 7795b80 2fa8624 d31b448 a3c0569 2fa8624 a3c0569 2fa8624 7795b80 2fa8624 d31b448 0ec90f6 a1d59b8 a3c0569 2fa8624 d31b448 a1d59b8 2fa8624 d31b448 0ec90f6 286a3b0 0ec90f6 a3c0569 d31b448 b794cdc 286a3b0 b794cdc 286a3b0 a3c0569 286a3b0 0ec90f6 a3c0569 0ec90f6 a3c0569 286a3b0 0ec90f6 a3c0569 286a3b0 a3c0569 286a3b0 a3c0569 286a3b0 a3c0569 286a3b0 a3c0569 286a3b0 a3c0569 2fa8624 7795b80 62d03ee d31b448 2fa8624 7795b80 2fa8624 d31b448 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 286a3b0 2fa8624 a3c0569 2fa8624 a1d59b8 2fa8624 7795b80 2fa8624 2b85024 2fa8624 a3c0569 2fa8624 62d03ee 2fa8624 62d03ee 2fa8624 7795b80 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 2b85024 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 0ec90f6 a3c0569 0ec90f6 2fa8624 0ec90f6 2fa8624 0ec90f6 2fa8624 2b85024 2fa8624 0ec90f6 a3c0569 0ec90f6 2fa8624 0ec90f6 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 2b85024 a3c0569 2fa8624 2b85024 2fa8624 2b85024 2fa8624 a3c0569 2b85024 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 2b85024 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a3c0569 2fa8624 a1d59b8 d31b448 2fa8624 a3c0569 2fa8624 a3c0569 0ec90f6 a3c0569 d31b448 7795b80 d31b448 a3c0569 d31b448 a3c0569 2fa8624 a3c0569 d31b448 a3c0569 d31b448 a3c0569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
"""
Askstein – Hybrid RAG (FAISS + PubMed), T4-small optimized (v2.4 FINAL)
Key points:
• T4-small friendly: device_map="auto", bounded max_memory (INT keys), OFFLOAD_DIR.
• One-time LoRA→base merge with graceful fallback if the adapter has unknown fields
(e.g., 'corda_config' saved with a newer PEFT). If merge fails, we continue with base.
• QUANTIZE env: "4bit" (default), "8bit", or "none" for the merged weights.
• FAISS + PubMed + Wikipedia routing; deterministic EA/EI/GJ snippets; “…and cite”.
"""
# ==== Early env hygiene =======================================================
import os
os.environ.setdefault("OMP_NUM_THREADS", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
# ==== Imports =================================================================
import re, json, time, sys, shutil, tempfile
from typing import List, Dict, Any, Optional
from functools import lru_cache
from xml.etree import ElementTree as ET
import numpy as np
import faiss
import requests
from sentence_transformers import SentenceTransformer
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
# Wikipedia (enabled per-call)
import wikipedia
from wikipedia.exceptions import DisambiguationError, PageError
# ==== Small utilities =========================================================
def _env(name: str, default: str = "") -> str:
v = os.getenv(name)
return v if v is not None else default
def _pick(*candidates: str) -> str:
here = os.path.dirname(os.path.abspath(__file__))
for c in candidates:
p = c if os.path.isabs(c) else os.path.join(here, c)
if os.path.exists(p):
return p
return candidates[0]
class LOG:
DEBUG = _env("DEBUG", "1").lower() not in ("0", "false", "no")
@staticmethod
def p(tag: str, msg: str):
if LOG.DEBUG:
print(f"[{tag}] {msg}")
# ==== Paths & Config ==========================================================
FAISS_PATH = _env("FAISS_PATH", _pick("index.faiss", "faiss/index.faiss"))
META_PATH = _env("META_PATH", _pick("index_meta.filtered.json",
"index_meta.filtered.jsonl",
"faiss/index_meta.filtered.jsonl"))
REL_CONFIG_PATH = _env("REL_CONFIG_PATH", _pick("relevance_config.json", "faiss/relevance_config.json"))
EMBED_MODEL_NAME = _env("EMBED_MODEL_NAME", "pritamdeka/S-PubMedBERT-MS-MARCO")
BASE_MODEL = _env("BASE_MODEL", "mistralai/Mistral-7B-Instruct-v0.2")
ADAPTER_PATH = _env("ADAPTER_PATH", _pick("lora_adapter", "adapters/mistral7b_fp16_lora"))
MERGED_MODEL_DIR = _env("MERGED_MODEL_DIR", _pick("merged-model", "/home/user/app/merged-model"))
FORCE_REMERGE = _env("FORCE_REMERGE", "0") == "1"
OFFLOAD_DIR = _env("OFFLOAD_DIR", _pick("offload", "/home/user/app/offload", "/tmp/offload"))
os.makedirs(OFFLOAD_DIR, exist_ok=True)
os.makedirs(MERGED_MODEL_DIR, exist_ok=True)
# Quantization: "4bit" (T4 default), "8bit", or "none"
QUANTIZE = _env("QUANTIZE", "4bit").lower()
# ==== T4-friendly limits & toggles ===========================================
ALLOW_WIKIPEDIA = False
MAX_NEW_TOKENS_GROUNDED = 384
MAX_NEW_TOKENS_FALLBACK = 256
MIN_USEFUL_CHARS = 260
PROMPT_BUDGET_TOKENS = 6400
FE_TRIM_WORDS = 230
torch.manual_seed(42)
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True # perf on T4
# ==== Relevance Config ========================================================
DEFAULT_REL_CONFIG = {
"positive_terms": [
"ctra","rigidity","ct-based","qct","micro-ct","hounsfield",
"femur","femoral","hip","proximal femur",
"bending","torsional","axial","failure load","modulus",
"nazarian","freedman","alboro"
],
"negative_terms": [
"t cell","lymph","immunolog","synapse","receptor","egfr",
"tumor","oncolog","immune","lymph node","cardio","myocard","neuro","skull","heart","brain"
],
"weights": {"positive": 2, "negative": 1},
"author_whitelist": ["Nazarian","Freedman","Alboro"],
"mesh_positive": [
"Femur", "Femoral Neck", "Hip", "Bone Density",
"Tomography, X-Ray Computed", "Finite Element Analysis",
"Bone and Bones", "Elastic Modulus", "Biomechanical Phenomena"
],
"mesh_weight": 2,
"author_weight": 3,
"min_rel_to_use_faiss": 3,
"ncbi_email": _env("NCBI_EMAIL", ""),
"ncbi_tool": _env("NCBI_TOOL", "askstein"),
"ncbi_apikey": _env("NCBI_APIKEY", ""),
}
def load_rel_config(path: str) -> Dict[str, Any]:
cfg = DEFAULT_REL_CONFIG.copy()
try:
if os.path.exists(path):
with open(path, "r", encoding="utf-8") as f:
user = json.load(f)
if isinstance(user, dict):
cfg.update(user)
except Exception as e:
LOG.p("rel-config", f"using defaults ({e})")
return cfg
REL_CFG = load_rel_config(REL_CONFIG_PATH)
print("Loaded relevance config keys:", list(REL_CFG.keys()))
if LOG.DEBUG:
print(f"[config] NCBI email set? {'yes' if REL_CFG.get('ncbi_email') else 'no'}")
print(f"[config] NCBI api_key set? {'yes' if REL_CFG.get('ncbi_apikey') else 'no'}")
# ==== HTTP utils (session + backoff + circuit breaker) =======================
class _Http:
session = requests.Session()
session.headers.update({"User-Agent": "Askstein/1.0 (+https://hf.co/spaces)"} )
_EUTILS_DOWN_UNTIL = 0.0
_EUTILS_COOLDOWN = 60.0
def _ncbi_params(extra: Dict[str, Any] | None = None) -> Dict[str, Any]:
p = {"retmode": "xml"}
email = REL_CFG.get("ncbi_email") or ""
tool = REL_CFG.get("ncbi_tool") or ""
apikey= REL_CFG.get("ncbi_apikey") or ""
if email: p["email"] = email
if tool: p["tool"] = tool
if apikey: p["api_key"] = apikey
if extra: p.update(extra)
return p
def _get_with_backoff(url: str, params: Dict[str, Any], tries: int = 3, base_sleep: float = 0.6, timeout: int = 10) -> str:
global _EUTILS_DOWN_UNTIL
if "eutils" in url and time.time() < _EUTILS_DOWN_UNTIL:
raise RuntimeError("EUtils circuit breaker active")
last_err = None
for i in range(tries):
try:
if "eutils" in url and not REL_CFG.get("ncbi_apikey"):
time.sleep(0.35) # polite rate without key
r = _Http.session.get(url, params=params, timeout=timeout)
r.raise_for_status()
return r.text
except Exception as e:
last_err = e
if i == tries - 1:
if "eutils" in url:
_EUTILS_DOWN_UNTIL = time.time() + _EUTILS_COOLDOWN
raise
time.sleep(base_sleep * (2 ** i))
raise last_err if last_err else RuntimeError("Unknown HTTP error")
# ==== Wikipedia helpers =======================================================
_SANITIZE = re.compile(r"```.*?```|<\s*script[^>]*>.*?<\s*/\s*script\s*>", re.I | re.S)
def wiki_summary_allow(query: str, sentences: int = 3) -> Optional[str]:
prev = globals().get("ALLOW_WIKIPEDIA", False)
globals()["ALLOW_WIKIPEDIA"] = True
try:
q = re.sub(r'^(what is|what are|define|where is|where are)\s+', '', query, flags=re.I)
q = re.sub(r'\s+(located|location)\s*\?*$', '', q, flags=re.I).strip('?').strip()
return wikipedia.summary(q, sentences=sentences)
except (DisambiguationError, PageError, Exception):
return None
finally:
globals()["ALLOW_WIKIPEDIA"] = prev
def wiki_summary_strong(query: str, sentences: int = 4) -> Optional[str]:
try:
results = wikipedia.search(query, results=5)
for title in results:
try:
page = wikipedia.page(title, auto_suggest=False)
text = (page.summary or "").strip()
if not text:
continue
if len(text) < 600 and page.content:
first_sec = page.content.split("\n\n")[1:2]
if first_sec:
text = text + "\n\n" + first_sec[0][:600]
return _SANITIZE.sub("", text)
except (DisambiguationError, PageError):
continue
except Exception:
pass
return None
# ==== Load FAISS + metadata + embedder =======================================
for pth in (FAISS_PATH, META_PATH):
if not os.path.exists(pth):
raise FileNotFoundError(f"Missing required file: {pth}")
print("Loading FAISS index…")
index = faiss.read_index(FAISS_PATH)
print("FAISS ntotal (rows):", index.ntotal)
print("Loading metadata…")
all_chunks: List[Dict[str, Any]] = []
with open(META_PATH, "r", encoding="utf-8") as f:
if META_PATH.endswith(".json"):
try:
data = json.load(f)
if isinstance(data, list):
all_chunks.extend(data)
except Exception:
pass
else:
for line in f:
try:
all_chunks.append(json.loads(line))
except Exception:
pass
print(f"Metadata records: {len(all_chunks)}")
if len(all_chunks) != index.ntotal:
raise RuntimeError(f"[ALIGNMENT] Metadata rows ({len(all_chunks)}) != FAISS ntotal ({index.ntotal}). Rebuild or fix META_PATH.")
print("Loading embedding model…", EMBED_MODEL_NAME)
embed_model = SentenceTransformer(EMBED_MODEL_NAME)
# Dim check + normalize for IP
try:
probe = embed_model.encode(["__dimcheck__"], convert_to_numpy=True).astype("float32")
dim = probe.shape[1] if probe.ndim == 2 else len(probe)
assert index.d == dim, f"FAISS dim {index.d} != embed dim {dim} (model={EMBED_MODEL_NAME}). Rebuild index."
except Exception as e:
raise RuntimeError(f"[FAISS] Dimension check failed: {e}")
_IS_IP = isinstance(index, faiss.IndexFlatIP) or "IndexFlatIP" in type(index).__name__
# ==== LLM (tokenizer + quant/merge cache) ====================================
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
print("Loading LLM on", device)
tokenizer_lm = AutoTokenizer.from_pretrained(BASE_MODEL, use_fast=False)
if tokenizer_lm.pad_token_id is None:
tokenizer_lm.pad_token = tokenizer_lm.eos_token
def _bnb_config() -> Optional[BitsAndBytesConfig]:
if QUANTIZE == "4bit":
return BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16,
)
if QUANTIZE == "8bit":
return BitsAndBytesConfig(load_in_8bit=True)
return None
def _merged_present(path: str) -> bool:
try:
names = os.listdir(path)
return any(n.endswith(".safetensors") for n in (names or []))
except Exception:
return False
def _max_memory_mapping():
if torch.cuda.is_available():
n = torch.cuda.device_count()
mem = {i: "12GiB" for i in range(n)} # INT keys required by accelerate>=0.30
mem["cpu"] = "24GiB"
return mem
return None
def _safe_try_load_peft(base_model) -> Optional[AutoModelForCausalLM]:
"""
Try to attach/merge the LoRA adapter. If the adapter config contains unknown fields
(e.g., 'corda_config' from a newer PEFT), catch and return None to fall back.
"""
if not os.path.exists(ADAPTER_PATH):
LOG.p("PEFT", f"No adapter at '{ADAPTER_PATH}'.")
return None
try:
peft_model = PeftModel.from_pretrained(
base_model,
ADAPTER_PATH,
device_map="auto" if torch.cuda.is_available() else None,
offload_folder=OFFLOAD_DIR,
)
merged = peft_model.merge_and_unload()
try:
merged.to(dtype=torch.float16)
except Exception:
pass
LOG.p("MERGE", "LoRA merge successful.")
return merged
except TypeError as te:
# Typical case: LoraConfig.__init__ got unexpected keyword arg 'corda_config'
LOG.p("PEFT", f"Adapter incompatible with current PEFT: {te}. Using BASE MODEL only.")
return None
except Exception as e:
LOG.p("PEFT", f"Failed to load adapter ({e}). Using BASE MODEL only.")
return None
def _load_merged_or_merge() -> AutoModelForCausalLM:
# 1) Use pre-merged weights if present and not forcing remerge
if (not FORCE_REMERGE) and _merged_present(MERGED_MODEL_DIR):
LOG.p("LOAD", f"Loading merged model from {MERGED_MODEL_DIR} (quant={QUANTIZE})")
return AutoModelForCausalLM.from_pretrained(
MERGED_MODEL_DIR,
torch_dtype=(dtype if QUANTIZE == "none" else None),
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True,
max_memory=_max_memory_mapping(),
quantization_config=_bnb_config(),
)
# 2) Merge path: load base (no quant), try to attach & merge LoRA, save; on failure, save base.
LOG.p("MERGE", "Merging LoRA into base weights (one-time)…")
base = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True,
max_memory=_max_memory_mapping(),
offload_folder=OFFLOAD_DIR,
)
merged = _safe_try_load_peft(base)
to_save = merged if merged is not None else base
# Persist for faster cold starts (and to allow quantized reloads)
tokenizer_lm.save_pretrained(MERGED_MODEL_DIR)
to_save.save_pretrained(MERGED_MODEL_DIR, safe_serialization=True)
LOG.p("MERGE", f"Saved {'merged' if merged is not None else 'base'} model to {MERGED_MODEL_DIR}")
return to_save
model_lm = _load_merged_or_merge()
model_lm.eval()
GEN_ARGS_GROUNDED = dict(
max_new_tokens=MAX_NEW_TOKENS_GROUNDED,
do_sample=False,
num_beams=1,
no_repeat_ngram_size=3,
repetition_penalty=1.08,
eos_token_id=tokenizer_lm.eos_token_id,
)
GEN_ARGS_FALLBACK = dict(
max_new_tokens=MAX_NEW_TOKENS_FALLBACK,
do_sample=False,
num_beams=1,
no_repeat_ngram_size=3,
repetition_penalty=1.05,
eos_token_id=tokenizer_lm.eos_token_id,
)
def _generate(inputs, grounded: bool):
args = GEN_ARGS_GROUNDED if grounded else GEN_ARGS_FALLBACK
with torch.inference_mode():
return model_lm.generate(**inputs, **args)
# ==== Text helpers ============================================================
def _to_text(rec: Any) -> str:
if isinstance(rec, str):
return rec.strip()
for k in ("text","chunk_text","content","body","passage","raw_text","section_text","abstract"):
v = rec.get(k)
if isinstance(v, str) and v.strip():
return _SANITIZE.sub("", v.strip())
segs = rec.get("segments")
if isinstance(segs, list):
return _SANITIZE.sub("", " ".join(s.get("text","").strip() for s in segs if isinstance(s, dict)).strip())
return ""
def _split_sents(s: str) -> List[str]:
s = s.replace("\r"," ").replace("\n"," ")
parts = re.split(r"(?<=[\.\?\!])\s+", s)
return [p.strip() for p in parts if p.strip()]
_BAD_BULLETS = re.compile(r"^\s*(?:\d+\s*\)|[•\-\*])\s*$", re.M)
_DANGLING = re.compile(r"[\[\(][^\]\)]*$")
def _post_clean(text: str) -> str:
t = re.sub(r"[ \t]+\n", "\n", text)
t = _BAD_BULLETS.sub("", t)
t = re.sub(r"\n{3,}", "\n\n", t).strip()
sents = _split_sents(t)
seen = set(); kept = []
for s in sents:
key = s.lower()
if key in seen: continue
seen.add(key); kept.append(s)
t = " ".join(kept)
t = re.sub(_DANGLING, "", t).strip(" -,:;")
return t
def _ensure_min_answer(ans: str) -> str:
if len(ans) >= MIN_USEFUL_CHARS:
return ans
tail = " If you want, I can add a short checklist of assumptions, units, and typical parameter ranges."
return (ans + tail) if not ans.endswith(".") else (ans + tail)
def _trim_words(text: str, max_words: int = FE_TRIM_WORDS) -> str:
words = text.split()
if len(words) <= max_words:
return text
return " ".join(words[:max_words]).rstrip(",;:") + "…"
# ==== Relevance & gating ======================================================
def _rel_score(text: str, title: str = "", cfg: Dict[str, Any] | None = None) -> int:
cfg = cfg or REL_CFG
blob = (title + " " + text).lower()
pos = sum(1 for k in cfg.get("positive_terms", []) if k.lower() in blob)
neg = sum(1 for k in cfg.get("negative_terms", []) if k.lower() in blob)
w_pos = int(cfg.get("weights", {}).get("positive", 2))
w_neg = int(cfg.get("weights", {}).get("negative", 1))
return pos * w_pos - neg * w_neg
@lru_cache(maxsize=4096)
def _mesh_by_pmid(pmid: str) -> List[str]:
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi",
_ncbi_params({"db":"pubmed","id":str(pmid)})
)
root = ET.fromstring(xml)
heads = []
for mh in root.findall(".//MeshHeading"):
dn = mh.find("DescriptorName")
if dn is not None and dn.text:
heads.append(dn.text.strip())
return heads
except Exception:
return []
@lru_cache(maxsize=4096)
def _authors_by_pmid(pmid: str) -> List[str]:
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi",
_ncbi_params({"db":"pubmed","id":str(pmid)})
)
root = ET.fromstring(xml)
names = []
for docsum in root.findall(".//DocSum"):
for item in docsum.findall("Item"):
if item.get("Name") == "AuthorList":
for au in item.findall("Item"):
if au.text:
last = au.text.split(",")[0].split(" ")[-1]
names.append(last)
return names
except Exception:
return []
def _boost_by_author(pmid: str | int, rel_base: int, cfg: Dict[str, Any] | None = None) -> int:
cfg = cfg or REL_CFG
wl = set(cfg.get("author_whitelist", []))
if not pmid or not wl:
return rel_base
names = _authors_by_pmid(str(pmid))
if any(n in wl for n in names):
return rel_base + int(cfg.get("author_weight", 3))
return rel_base
def _mesh_boost(pmid: str | int, rel_base: int, cfg: Dict[str, Any] | None = None) -> int:
cfg = cfg or REL_CFG
if not pmid:
return rel_base
targets = set(x.lower() for x in cfg.get("mesh_positive", []))
weight = int(cfg.get("mesh_weight", 2))
heads = [h.lower() for h in _mesh_by_pmid(str(pmid))]
hit = sum(1 for h in heads if h in targets)
return rel_base + hit * weight
_MSK_MUST = re.compile(
r"\b(femur|femoral|hip|proximal\s+femur|ctra|qct|ct-?based|rigidity|bending|torsional|axial|failure\s+load)\b",
re.I
)
_CT_RIGIDITY_TOKENS = re.compile(r"\b(qct|ct[-\s]?based|ctra|rigidity|bending|torsion|hounsfield|finite\s+element|fe[am])\b", re.I)
_FE_TOKENS = re.compile(r"\b(fe|fea|finite\s+element|boundary\s+conditions|nonlinear|yield|fracture\s+load|micromotion)\b", re.I)
_ANATOMY_OR_HISTORY = re.compile(
r"(?:\bhistory\b.*\b(femur|hip|bone)\b|\bwhat\s+is\s+the\s+(femur|hip)\b|\banatomy\b.*\b(hip|femur)\b)",
re.I
)
_PAPERS_INTENT = re.compile(r"\b(key\s+papers|suggest\s+papers|landmark|seminal|important|top\s+papers)\b", re.I)
STOPWORDS = set("the a an of and for with without to on in by from into over under how what why where when is are was were be been being this that these those it its as about".split())
def _compact_terms(q: str) -> str:
words = re.findall(r"[A-Za-z0-9\-]+", q.lower())
keep = [w for w in words if w not in STOPWORDS and len(w) > 2]
return " ".join(keep)[:200]
def _parse_year(y: str) -> int:
try:
return int(re.findall(r"\d{4}", y or "")[0])
except Exception:
return 0
def _is_msk_paper(title: str, journal: str, year: str = "") -> bool:
t = f"{title or ''} {journal or ''}".lower()
body_ok = any(k in t for k in ["femur","femoral","femoral neck","proximal femur","hip"])
method_ok = any(k in t for k in ["qct","quantitative computed tomography"," ct "," ct-",
"finite element","fea","structural rigidity","rigidity","bending","torsion"])
if any(k in t for k in ["humerus","shoulder","humeral"]) and not body_ok:
return False
if not (body_ok and method_ok):
return False
y = _parse_year(year)
if y and not (2000 <= y <= 2025):
return False
return True
# ==== PubMed & citations ======================================================
def fetch_pubmed_chunks(query_or_pmid: str, max_papers: int = 3) -> List[Dict[str, Any]]:
retries = 2
chunks: List[Dict[str, Any]] = []
def _efetch(pmid: str):
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi",
_ncbi_params({"db":"pubmed","id":pmid})
)
tree = ET.fromstring(xml)
paras = [a.text for a in tree.findall(".//AbstractText") if a is not None and a.text]
if paras:
text = "\n".join(paras)
chunks.append({"text": text, "source": "pubmed", "pmid": pmid})
except Exception:
pass
if query_or_pmid.isdigit():
_efetch(query_or_pmid)
return chunks
pmids: List[str] = []
for attempt in range(retries + 1):
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
_ncbi_params({"db":"pubmed","term":query_or_pmid, "retmax":max_papers})
)
root = ET.fromstring(xml)
pmids = [e.text for e in root.findall(".//Id") if e is not None and e.text]
break
except Exception:
if attempt == retries:
return []
time.sleep(0.5 * (2 ** attempt))
for pmid in pmids[:max_papers]:
_efetch(pmid)
return chunks
@lru_cache(maxsize=4096)
def fetch_pubmed_citations(query: str, max_results: int = 5) -> List[str]:
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
_ncbi_params({"db":"pubmed","term":query, "retmax":max_results})
)
root = ET.fromstring(xml)
pmids = [elem.text for elem in root.findall(".//Id") if elem is not None and elem.text]
if not pmids:
return []
except Exception:
return []
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi",
_ncbi_params({"db":"pubmed","id":",".join(pmids)})
)
summary_root = ET.fromstring(xml)
except Exception:
return []
citations: List[str] = []
for docsum in summary_root.findall(".//DocSum"):
pmid = docsum.findtext("Id", default="")
title = journal = year = doi = ""
authors: List[str] = []
for item in docsum.findall("Item"):
name = item.get("Name", "")
if name == "Title":
title = item.text or ""
elif name == "FullJournalName":
journal = item.text or ""
elif name == "PubDate":
year = (item.text or "").split()[0]
elif name == "AuthorList":
for au in item.findall("Item"):
if au.text:
authors.append(au.text)
elif name == "ArticleIds":
for sub in item.findall("Item"):
if sub.get("Name") == "doi":
doi = sub.text or ""
if not _is_msk_paper(title, journal, year):
continue
first_author = authors[0] if authors else ""
auth_str = f"{first_author} et al." if first_author else ""
parts = [p for p in [auth_str, title, journal, year] if p]
cit = ", ".join(parts).strip().rstrip(",")
if pmid: cit += f"; PMID:{pmid}"
if doi: cit += f" DOI:{doi}"
if cit: citations.append(cit)
return citations[:max_results]
# ==== PMC helpers =============================================================
@lru_cache(maxsize=4096)
def _pmid_to_pmcid(pmid: str) -> Optional[str]:
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi",
_ncbi_params({"dbfrom":"pubmed","db":"pmc","id":pmid})
)
root = ET.fromstring(xml)
for link in root.findall(".//LinkSetDb/Link/Id"):
if link.text:
return link.text.strip()
except Exception:
pass
return None
def fetch_pmc_paras(pmid: str, max_paras: int = 2) -> List[str]:
pmc = _pmid_to_pmcid(str(pmid))
if not pmc:
return []
try:
xml = _get_with_backoff(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi",
_ncbi_params({"db":"pmc","id":pmc})
)
root = ET.fromstring(xml)
paras = []
for sec in root.findall(".//body//sec"):
for p in sec.findall("p"):
if p.text and len(p.text.strip()) > 200:
paras.append(p.text.strip())
if len(paras) >= max_paras:
break
if len(paras) >= max_paras:
break
return paras
except Exception:
return []
# ==== FE/Anatomy routing helpers =============================================
def _biomechish(q: str) -> bool:
return bool(re.search(r"\b(femur|femoral|hip|bone|qct|ctra|rigidity|bending|torsion|elastic modulus|finite\s+element|fea|fracture|healing|cortical)\b", q, re.I))
def _is_fe_override(q: str) -> bool:
return bool(_FE_TOKENS.search(q))
# ==== Conflict detector =======================================================
_CONTRA_NO_EFFECT = re.compile(r"\b(no\s+significant\s+difference|no\s+effect|not\s+significant)\b", re.I)
_CONTRA_CHANGE = re.compile(r"\b(increase[ds]?|decrease[ds]?|higher|lower|greater|reduced?)\b", re.I)
def _has_conflict(text: str) -> bool:
return bool(_CONTRA_NO_EFFECT.search(text) and _CONTRA_CHANGE.search(text))
# ==== Canonical formulas injection ===========================================
CANON_PATTERNS = {
r"\b(axial (rigidity|stiffness)|\bea\b)\b": ("Axial Rigidity (EA)", "EA = Σ_i (E_i · dA_i)"),
r"\b(bending (rigidity|stiffness)|\bei\b)\b": ("Bending Rigidity (EI)", "EI = Σ_i (E_i · dA_i · y_i^2)"),
r"\b(torsional (rigidity|stiffness)|\bgj\b)\b": ("Torsional Rigidity (GJ)", "GJ = G·J; G = E/(2(1+ν)), J = Σ_i (dA_i · r_i^2)"),
}
def _maybe_inject_formula(q_lower: str, chunks: List[Dict[str, Any]]) -> bool:
for pat, (label, text) in CANON_PATTERNS.items():
if re.search(pat, q_lower):
chunks.insert(0, {"text": f"{label}:\n{text}", "source": "injected"})
return True
return False
# ==== “…and cite” curated fallbacks ==========================================
HARDCODED_CITS = {
"EA": [
"Morgan EF et al., Mechanical properties of cortical bone…, J Biomech, 2003; PMID:12547357",
"Turner CH, Burr DB., Experimental techniques for bone mechanics, Bone, 1993; PMID:8252072"
],
"EI": [
"Courtney AC et al., Age-related reductions in the strength of the femur…, J Bone Miner Res, 1995; PMID:7584933",
"Bell KL et al., Regional Heterogeneity of the Proximal Femur…, Bone, 1999; PMID:10574202"
],
"GJ": [
"Cowin SC., Bone Mechanics Handbook (torsion of bone cross-sections), CRC Press, 2001.",
"Vollmer M et al., Long bone torsion testing methods, J Biomech, 1987; PMID:3670157"
]
}
def _fallback_cits_for(term: str) -> List[str]:
return HARDCODED_CITS.get(term.upper(), [])
# ==== Lab detection (lightweight) ============================================
def detect_lab(q: str) -> str:
ql = q.lower()
if "freedman" in ql:
return "freedman"
if "alboro" in ql or "alborno" in ql:
return "alboro"
return "nazarian"
def build_lab_query(core_q: str, lab: str = "nazarian") -> str:
topics = [
"femur","femoral neck","hip","proximal femur",
"CT","QCT","micro-CT","rigidity","CTRA","structural rigidity",
"bending","torsional","axial","failure load","modulus","Hounsfield"
]
ta = " OR ".join(f'"{t}"[Title/Abstract]' for t in topics)
if lab == "freedman":
author = '("Freedman BA"[Author] OR "Freedman"[Author])'
elif lab == "alboro":
author = '("Alboro"[Author] OR "Alborno"[Author])'
else:
author = '("Nazarian A"[Author] OR "Ara Nazarian"[Full Author Name])'
date = '("2000"[Date - Publication] : "3000"[Date - Publication])'
return f"{author} AND ({ta}) AND {date}"
# ==== Retrieval ===============================================================
def retrieve_context(query: str, top_k: int = 10) -> List[Dict[str, Any]]:
q = query.strip()
if _ANATOMY_OR_HISTORY.search(q):
wiki = wiki_summary_allow(q, sentences=4) or wiki_summary_strong(q, sentences=4)
if wiki:
LOG.p("WIKI", "Anatomy/History → Wikipedia")
return [{"text": wiki, "source": "wikipedia"}]
pm = re.search(r"pmid[:\s]*(\d+)", q, re.I)
if pm:
LOG.p("PMID", f"PMID inline {pm.group(1)}")
return fetch_pubmed_chunks(pm.group(1), max_papers=1)
if not (_CT_RIGIDITY_TOKENS.search(q) or _is_fe_override(q)):
LOG.p("FALLBACK", "No CT/FE tokens → robust PubMed/Wiki")
qx = q.lower()
compact = _compact_terms(qx)
passes = [
f'"{qx}"[Title/Abstract]',
f'({compact}) AND (hip[TiAb] OR femur[TiAb] OR femoral[TiAb] OR tibia[TiAb] OR "long bone"[TiAb] '
f'OR fracture[TiAb] OR healing[TiAb] OR cortical[TiAb] OR trabecular[TiAb] OR mouse[TiAb] OR murine[TiAb]) '
f'AND ("2000"[DP] : "3000"[DP])',
build_lab_query(qx, lab=detect_lab(qx)),
f'({compact}) AND ("Bone and Bones"[MeSH] OR Femur[MeSH] OR Tibia[MeSH] OR '
f'"Fractures, Bone"[MeSH] OR "Wound Healing"[MeSH] OR "Tomography, X-Ray Computed"[MeSH] OR '
f'"Finite Element Analysis"[MeSH]) AND ("2000"[DP] : "3000"[DP])',
]
if re.search(r"\b(how|why|impact|effect|influence)\b", qx):
passes.append(f'({compact}) AND review[ptyp] AND ("2010"[DP] : "3000"[DP])')
seen_pmids, fetched = set(), []
for term in passes:
for c in fetch_pubmed_chunks(term, max_papers=20):
pmid = str(c.get("pmid") or "")
if pmid and pmid in seen_pmids:
continue
seen_pmids.add(pmid); fetched.append(c)
if len(fetched) >= 20:
break
for it in fetched:
rel = _rel_score(it.get("text",""), it.get("title",""), REL_CFG)
rel = _boost_by_author(it.get("pmid"), rel, REL_CFG)
rel = _mesh_boost(it.get("pmid"), rel, REL_CFG)
it["_rel"] = rel
fetched.sort(key=lambda x: x.get("_rel", 0), reverse=True)
if fetched:
LOG.p("PUBMED", f"Robust PubMed hit: {len(fetched)}")
enriched = []
for r in fetched[:8]:
enriched.append(r)
pmid = r.get("pmid")
if pmid:
try:
paras = fetch_pmc_paras(str(pmid), max_paras=1)
except Exception:
paras = []
for p in paras:
enriched.append({"text": p, "source": "pmc", "pmid": pmid})
return enriched[:top_k]
wiki = wiki_summary_strong(qx, sentences=4)
if wiki:
LOG.p("WIKI", "Wikipedia strong fallback hit")
return [{"text": wiki, "source": "wikipedia"}]
LOG.p("RETRIEVAL", "No results found in robust fallback")
return []
# FAISS path
q_emb = embed_model.encode([q], convert_to_numpy=True).astype("float32")
if _IS_IP:
faiss.normalize_L2(q_emb)
D, I = index.search(q_emb, top_k)
results: List[Dict[str, Any]] = []
for dist, idx_ in zip(D[0], I[0]):
if idx_ < 0:
continue
item = all_chunks[idx_].copy()
item["score"] = float(dist)
t = _to_text(item)
if not t:
pmid = str(item.get("pmid") or "")
if pmid.isdigit():
abs_chunks = fetch_pubmed_chunks(pmid, max_papers=1)
if abs_chunks:
t = abs_chunks[0].get("text","")
if not t:
continue
item["text"] = t
results.append(item)
if results:
for it in results:
rel = _rel_score(it.get("text", ""), it.get("title", ""), REL_CFG)
rel = _boost_by_author(it.get("pmid"), rel, REL_CFG)
rel = _mesh_boost(it.get("pmid"), rel, REL_CFG)
it["_rel"] = rel
results = sorted(results, key=lambda x: (x.get("_rel", 0), x.get("score", 0)), reverse=True)
min_rel = int(REL_CFG.get("min_rel_to_use_faiss", 3))
positives = [
r for r in results
if r.get("_rel", 0) >= min_rel and _MSK_MUST.search((r.get("title","")+" "+r.get("text","")))
]
seen = set(); deduped: List[Dict[str, Any]] = []
for r in positives:
key = str(r.get("pmid") or "").strip() \
or (r.get("title") or "").strip().lower()[:120] \
or (r.get("text") or "").strip().lower()[:200]
if key in seen: continue
seen.add(key); deduped.append(r)
if deduped:
LOG.p("FAISS", f"FAISS hit={len(deduped)} (top rel={deduped[0].get('_rel')} score={deduped[0].get('score'):.3f})")
return deduped[:top_k]
else:
LOG.p("FALLBACK", "FAISS results off-topic → PubMed fallback")
results = fetch_pubmed_chunks(q)
if results:
LOG.p("PUBMED", "PubMed search hit")
return results
if _biomechish(q):
wiki = wiki_summary_allow(q, sentences=3)
if wiki:
LOG.p("WIKI", "Wikipedia biomechanics fallback")
return [{"text": wiki, "source": "wikipedia"}]
LOG.p("RETRIEVAL", "No results found at all")
return []
# ==== Prompting & Generation ==================================================
def build_prompt(chunks: List[Dict[str, Any]], question: str, prompt_budget=PROMPT_BUDGET_TOKENS) -> str:
header = (
"You are Askstein (orthopedic biomechanics). Use ONLY the [Context] to answer. "
"If the context is insufficient, say 'I don’t know based on the provided context.' "
"Stay within musculoskeletal CT-based rigidity (EA, EI, GJ), femur/hip, CTRA/QCT, or FE modeling of these. "
"Do not discuss cardiology, neurology, or unrelated domains."
)
question_block = f"[Question]:\n{question}\n"
header_ids = tokenizer_lm(header, return_tensors="pt").input_ids[0]
q_ids = tokenizer_lm(question_block, return_tensors="pt").input_ids[0]
remaining = max(256, prompt_budget - len(header_ids) - len(q_ids))
ctx_texts, used = [], 0
for c in chunks:
t = _to_text(c)
if not t: continue
ids = tokenizer_lm(t, return_tensors="pt").input_ids[0]
if used + len(ids) > remaining: break
used += len(ids); ctx_texts.append(t)
context = "\n\n".join(ctx_texts)
return f"{header}\n\n[Context]:\n{context}\n\n{question_block}"
def _decode_generated(out_ids, in_len: int) -> str:
gen = out_ids[0][in_len:]
return tokenizer_lm.decode(gen, skip_special_tokens=True).lstrip(". \n").strip()
def _synthesize_answer(chunks: List[Dict[str, Any]], question: str) -> str:
LOG.p("SYNTH", "Multi-chunk synthesis pass")
prompt = build_prompt(chunks, question)
inputs = tokenizer_lm(prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
out = _generate(inputs, grounded=True)
in_len = inputs["input_ids"].shape[-1]
answer = _decode_generated(out, in_len)
return _post_clean(answer)
def _answer_from_chunks(chunks: List[Dict[str, Any]], question: str) -> str:
joined = " ".join(_to_text(c) for c in chunks if _to_text(c))
if _has_conflict(joined):
LOG.p("SYNTH", "Conflict detected (no-diff vs change) → summarize")
return _synthesize_answer(chunks, question)
return _synthesize_answer(chunks, question)
# ==== Deterministic biomech definitions ======================================
def deterministic_definitions_text(core_q: str) -> Optional[str]:
q = core_q.lower()
if "define axial rigidity" in q or "what is axial rigidity" in q:
return ("Axial rigidity (EA) is Σ(Eᵢ·dAᵢ) across a CT slice; units: N. "
"Modulus E per voxel comes from a density–modulus calibration; areas dAᵢ are voxel areas.")
if "define bending rigidity" in q or "what is bending rigidity" in q:
return ("Bending rigidity (EI) is Σ(Eᵢ·dAᵢ·yᵢ²) about a given axis; units: N·mm². "
"yᵢ is distance to the neutral axis; computed slice-by-slice from QCT.")
if "define torsional rigidity" in q or "what is torsional rigidity" in q or "define gj" in q:
return ("Torsional rigidity (GJ) = shear modulus G times polar moment J. "
"In QCT, J ≈ Σ(dAᵢ·rᵢ²) about the centroid; G ≈ E/(2(1+ν)).")
if "qct" in q and ("torsional" in q or "gj" in q):
return ("From QCT, torsional rigidity is estimated as GJ, where J ≈ Σ(dAᵢ·rᵢ²) about the slice centroid and "
"G = E/(2(1+ν)) from the voxel E map (ν≈0.3). Compute per-slice along the shaft/neck and report minima "
"or location-specific values. Note: this is an engineering approximation; full torsion may require FEA.")
if re.search(r"\b(outline|steps|workflow|protocol)\b.*\b(ct|qct).*(rigidity|ea|ei|gj)", q):
return (
"CT-based structural rigidity (CTRA/QCT) workflow:\n"
"1) Acquire QCT of proximal femur (≤1 mm slice; in-phantom density calibration).\n"
"2) Preprocess (bias/beam-hardening correction; resample to isotropic voxels).\n"
"3) Segment bone → cortical vs trabecular (threshold + morphology cleanup).\n"
"4) HU→ρ (mgHA/cm³) via phantom; ρ→E using calibrated density–modulus map.\n"
"5) Define cross-sections along the femoral neck axis (every 1–2 mm).\n"
"6) EA = Σ(Eᵢ·dAᵢ); EI_x/EI_y = Σ(Eᵢ·dAᵢ·yᵢ²/xᵢ²); GJ ≈ Σ(dAᵢ·rᵢ²)·G.\n"
"7) Extract minima (e.g., min(EI)) as fracture-relevant metrics.\n"
"8) Validate vs tests/subject-specific FEA; report units & axes.\n"
"9) QC overlays, centroid alignment, axis consistency, unit checks.\n"
"10) Output min/mean EA/EI/GJ with locations; compare across time/subjects."
)
if re.search(r"\b(modulus)\b.*\brigidity\b|\bdefine\s+modulus\b", q):
return ("Elastic modulus (E) is a material property (stress/strain; Pa). "
"Rigidity is a structural property: EA (axial), EI (bending), GJ (torsion). Modulus ≠ rigidity.")
return None
# ==== Orchestrator ============================================================
def ask(question: str) -> str:
q = question.strip()
m = re.search(r"pmid[:\s]*(\d+)", q, re.I)
if m:
pmid = m.group(1)
chunks = fetch_pubmed_chunks(pmid, max_papers=1)
return "\n".join(c.get("text", "") for c in chunks) or "Sorry, no abstract found."
if _PAPERS_INTENT.search(q):
core_q = re.sub(_PAPERS_INTENT, "", q, flags=re.I).strip() or "CT/QCT structural rigidity femur hip finite element"
compact = _compact_terms(core_q)
pm_query = (
f'(({compact}) AND (hip[TiAb] OR femur[TiAb] OR femoral[TiAb])) AND '
'("Finite Element Analysis"[MeSH Terms] OR finite element[TiAb] OR QCT[TiAb] OR CT[TiAb] OR rigidity[TiAb]) '
'AND ("2000"[DP] : "2025"[DP])'
)
cits = fetch_pubmed_citations(pm_query, max_results=5)
return "Recommended papers:\n" + "\n".join(f"- {c}" for c in cits) if cits else \
"Sorry, I couldn’t find good MSK/rigidity papers for that query."
comp = re.match(r"(.+?)\s+and\s+(?:cite|references?|studies?|papers?)", q, flags=re.I)
if comp:
core_q = comp.group(1).strip()
det_text = deterministic_definitions_text(core_q)
used_term = None
if det_text:
explanation = det_text
lq = core_q.lower()
if ("torsional" in lq) or ("gj" in lq):
used_term = "GJ"
pm_query = ('(torsion[TiAb] OR "polar moment"[TiAb] OR GJ[TiAb]) AND '
'("Bone and Bones"[MeSH] OR Femur[TiAb] OR "Long bone"[TiAb]) AND '
'("Finite Element Analysis"[MeSH] OR QCT[TiAb] OR CT[TiAb]) AND '
'("2000"[DP] : "2025"[DP])')
elif ("bending" in lq) or ("ei" in lq):
used_term = "EI"
pm_query = ('(bending[TiAb] OR "second moment"[TiAb] OR EI[TiAb]) AND '
'("Bone and Bones"[MeSH] OR Femur[TiAb]) AND '
'("Finite Element Analysis"[MeSH] OR QCT[TiAb] OR CT[TiAb]) AND '
'("2000"[DP] : "2025"[DP])')
else:
used_term = "EA"
pm_query = ('("axial rigidity"[TiAb] OR EA[TiAb] OR "axial stiffness"[TiAb]) AND '
'("Bone and Bones"[MeSH] OR Femur[TiAb]) AND '
'("Finite Element Analysis"[MeSH] OR QCT[TiAb] OR CT[TiAb]) AND '
'("2000"[DP] : "2025"[DP])')
citations = fetch_pubmed_citations(pm_query, max_results=5) or _fallback_cits_for(used_term or "")
else:
chunks = retrieve_context(core_q, top_k=5)
explanation = _answer_from_chunks(chunks, core_q) if chunks else "I don’t know based on the provided context."
pm_query = f'"{core_q}"[Title/Abstract]'
citations = fetch_pubmed_citations(pm_query, max_results=5)
if not citations:
lab = detect_lab(core_q)
pm_query = build_lab_query(core_q, lab=lab)
citations = fetch_pubmed_citations(pm_query, max_results=5)
if not citations:
compact = _compact_terms(core_q)
pm_query = (
f'({compact}) AND ("Bone and Bones"[MeSH] OR Femur[TiAb] OR Hip[TiAb] '
f'OR Rigidity[TiAb] OR "Tomography, X-Ray Computed"[MeSH] OR "Finite Element Analysis"[MeSH]) '
f'NOT (heart[TiAb] OR cardiac[TiAb] OR brain[TiAb] OR skull[TiAb] OR EGFR[TiAb]) '
f'AND ("2000"[DP] : "2025"[DP])'
)
citations = fetch_pubmed_citations(pm_query, max_results=5)
resp = (det_text or explanation)
if citations:
resp += "\n\nCitations:\n" + "\n".join(citations)
else:
resp += f"\n\nSorry, no relevant citations found for “{core_q}.”"
ans = _ensure_min_answer(_post_clean(resp))
if _is_fe_override(core_q):
ans = _trim_words(ans, FE_TRIM_WORDS)
return ans
det_answer = deterministic_definitions_text(q)
if det_answer:
LOG.p("ASK", "Deterministic definition/workflow fired")
return det_answer
if not (_MSK_MUST.search(q) or _is_fe_override(q)):
chunks = retrieve_context(q, top_k=5)
if chunks:
_maybe_inject_formula(q.lower(), chunks)
ans = _answer_from_chunks(chunks, q)
ans = _ensure_min_answer(_post_clean(ans))
if _is_fe_override(q):
ans = _trim_words(ans, FE_TRIM_WORDS)
return ans
sys_prompt = (
"You are Askstein (orthopedic biomechanics). Prefer concise, factual answers. "
"If you lack sufficient evidence, say so briefly and propose what studies/data would answer it. "
"Avoid non-MSK domains."
)
llm_prompt = f"{sys_prompt}\n\nQ: {q}\nA:"
inputs = tokenizer_lm(llm_prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
out = _generate(inputs, grounded=False)
in_len = inputs["input_ids"].shape[-1]
ans = _post_clean(_decode_generated(out, in_len))
return _ensure_min_answer(ans)
chunks = retrieve_context(q, top_k=5)
if not chunks:
sys_prompt = (
"You are Askstein (orthopedic biomechanics). Prefer concise, factual answers. "
"If you lack sufficient evidence, say so briefly and propose what studies/data would answer it."
)
llm_prompt = f"{sys_prompt}\n\nQ: {q}\nA:"
inputs = tokenizer_lm(llm_prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
out = _generate(inputs, grounded=False)
in_len = inputs["input_ids"].shape[-1]
ans = _post_clean(_decode_generated(out, in_len))
return _ensure_min_answer(ans)
_maybe_inject_formula(q.lower(), chunks)
ans = _answer_from_chunks(chunks, q)
ans = _ensure_min_answer(_post_clean(ans))
if _is_fe_override(q):
ans = _trim_words(ans, FE_TRIM_WORDS)
return ans
# ==== Minimal CLI =============================================================
if __name__ == "__main__":
print("=== Askstein CLI === (type 'exit' to quit)")
try:
while True:
try:
q = input("You: ")
except EOFError:
break
if not q:
continue
if q.lower() in ("exit","quit"):
break
try:
out = ask(q)
print("Askstein:", out, "\n")
except Exception as e:
print("[error]", repr(e))
except KeyboardInterrupt:
pass
|