import spaces import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) @spaces.GPU def transcribe(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text demo = gr.Blocks() file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe"], label="Task", value="transcribe"), ], outputs="text", title="Whisper Large V3: Transcribe Audio", allow_flagging="never", ) with demo: gr.TabbedInterface([file_transcribe], ["Audio file"]) demo.queue().launch(share=True)