Spaces:
Running
Running
File size: 7,424 Bytes
77a70ee 2898702 ae68879 2898702 ae68879 2898702 ae68879 77a70ee 5e81b01 2898702 21a55e5 5e81b01 2898702 5013d6a ae68879 2898702 801bd57 2898702 21a55e5 ae68879 2898702 38e5a7e ae68879 da6bbb2 77a70ee ae68879 2898702 ae68879 2898702 ae68879 2898702 ae68879 2898702 ae68879 2898702 ae68879 5e81b01 2898702 5e81b01 2898702 5e81b01 2898702 ae68879 77a70ee 2898702 38e5a7e 21a55e5 77a70ee 2898702 21a55e5 5e81b01 21a55e5 2898702 21a55e5 77a70ee 21a55e5 ae68879 21a55e5 2898702 da6bbb2 21a55e5 2898702 da6bbb2 5e81b01 21a55e5 ae68879 21a55e5 ae68879 2898702 ae68879 2898702 ae68879 3d83a20 ae68879 5e81b01 ae68879 5e81b01 ae68879 2898702 5e81b01 2898702 ae68879 77a70ee 5e81b01 2898702 5e81b01 2898702 21a55e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
"""
Twoβstage AIβimage detector with visual explainability
ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Stageβ1 : haywoodsloan/ai-image-detector-deploy (SwinβV2) β RealΒ vsΒ AI
β³ GradβCAM overlay
Stageβ2 : SuSy.pt (torchscript ResNet) β Generator
β³ Saliencyβgrad overlay (Captum)
"""
# βββββββββββββββββββββ Imports ββββββββββββββββββββββββββββββββββββββββ
import torch, numpy as np, pandas as pd, matplotlib.pyplot as plt
from PIL import Image
from torchvision import transforms
from transformers import AutoImageProcessor, AutoModelForImageClassification
from torchcam.methods import GradCAM
from captum.attr import Saliency
from skimage.feature import graycomatrix, graycoprops
import gradio as gr
# βββββββββββββββββββ Runtime / models ββββββββββββββββββββββββββββββββ
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
plt.set_loglevel("ERROR")
BIN_ID = "haywoodsloan/ai-image-detector-deploy"
bin_proc = AutoImageProcessor.from_pretrained(BIN_ID)
bin_mod = AutoModelForImageClassification.from_pretrained(BIN_ID).to(device).eval()
CAM_LAYER_BIN = "encoder.layers.3.blocks.1.layernorm_after"
susy_mod = torch.jit.load("SuSy.pt").to(device).eval()
CAM_LAYER_SUSY = "feature_extractor.resnet_model.layer4.1.relu"
GEN_CLASSES = ["Stable Diffusion 1.x", "DALLΒ·EΒ 3",
"MJΒ V5/V6", "Stable DiffusionΒ XL", "MJΒ V1/V2"]
PATCH, TOP = 224, 5
# βββββββββββββββ Universal overlay helper ββββββββββββββββββββββββββββ
def overlay_explanation(model, model_inputs, target_layer, class_idx, base_img):
"""Return heatβmap PIL.Image blended on top of base_img."""
is_script = isinstance(model, torch.jit.ScriptModule)
# clone & ensure gradients
if torch.is_tensor(model_inputs):
forward_inputs = model_inputs.clone().detach().requires_grad_(True)
else:
forward_inputs = {
k: v.clone().detach().requires_grad_(True)
for k, v in model_inputs.items()
}
if is_script:
model.zero_grad(set_to_none=True)
sal = Saliency(model)
grads = sal.attribute(forward_inputs, target=class_idx).abs().mean(1, keepdim=True)
mask = grads.squeeze().detach().cpu().numpy()
else:
mods = dict(model.named_modules())
tgt = mods.get(target_layer) or next(m for n, m in mods.items() if n.endswith(target_layer))
cam = GradCAM(model, target_layer=tgt)
with torch.enable_grad():
outputs = (model(forward_inputs) if torch.is_tensor(forward_inputs)
else model(**forward_inputs))
logits = outputs.logits if hasattr(outputs, "logits") else outputs
# torchcamΒ 0.7 β scores=β¦, earlier β logits=β¦
try:
cam_result = cam(class_idx, scores=logits)
except TypeError:
cam_result = cam(class_idx, logits=logits)
mask = cam_result[0].detach().cpu().numpy()
# clean up handles
if hasattr(cam, "remove_hooks"):
cam.remove_hooks()
elif hasattr(cam, "clear_hooks"):
cam.clear_hooks()
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-6)
heat = Image.fromarray((plt.cm.jet(mask)[:, :, :3] * 255).astype(np.uint8))\
.resize(base_img.size, Image.BICUBIC)
return Image.blend(base_img.convert("RGBA"), heat.convert("RGBA"), alpha=0.45)
# βββββββββββββ SuSy patchβranking helper ββββββββββββββββββββββββββββββ
to_tensor = transforms.ToTensor()
to_gray = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
def susy_predict(img: Image.Image):
w, h = img.size
npx, npy = max(1, w // PATCH), max(1, h // PATCH)
patches = np.zeros((npx * npy, PATCH, PATCH, 3), dtype=np.uint8)
for i in range(npx):
for j in range(npy):
x, y = i * PATCH, j * PATCH
patches[i*npy+j] = np.array(img.crop((x, y, x+PATCH, y+PATCH)).resize((PATCH, PATCH)))
contrasts = []
for p in patches:
g = to_gray(Image.fromarray(p)).squeeze(0).numpy()
glcm = graycomatrix(g, [5], [0], 256, symmetric=True, normed=True)
contrasts.append(graycoprops(glcm, "contrast")[0, 0])
idx = np.argsort(contrasts)[::-1][:TOP]
tens = torch.from_numpy(patches[idx].transpose(0, 3, 1, 2)).float() / 255.0
with torch.no_grad():
probs = susy_mod(tens.to(device)).softmax(-1).mean(0).cpu().numpy()[1:]
return dict(zip(GEN_CLASSES, probs))
# βββββββββββββββββββββ Pipeline βββββββββββββββββββββββββββββββββββββββ
def pipeline(img_arr):
img = Image.fromarray(img_arr) if isinstance(img_arr, np.ndarray) else img_arr
heatmaps = []
# Stageβ1 classification (no grad)
with torch.no_grad():
inp_bin = bin_proc(images=img, return_tensors="pt").to(device)
logits = bin_mod(**inp_bin).logits.softmax(-1)[0]
ai_conf, real_conf = logits
winner_idx = 0 if ai_conf >= real_conf else 1
# Stageβ1 heatβmap
inp_bin_heat = {k: v.clone().detach().requires_grad_(True) for k, v in inp_bin.items()}
heatmaps.append(
overlay_explanation(bin_mod, inp_bin_heat, CAM_LAYER_BIN, winner_idx, img)
)
verdict = f"Authentic ({real_conf*100:.1f}β―%)"
bar_df, show_bar = None, False
# Stageβ2 if AI
if ai_conf > real_conf:
verdict = f"AIβgenerated ({ai_conf*100:.1f}β―%)"
gen_probs = susy_predict(img)
bar_df = pd.DataFrame({"class": gen_probs.keys(), "prob": gen_probs.values()})
show_bar = True
with torch.no_grad():
susy_in = to_tensor(img.resize((224, 224))).unsqueeze(0).to(device)
g_idx = susy_mod(susy_in)[0, 1:].argmax().item() + 1
heatmaps.append(
overlay_explanation(susy_mod, susy_in, CAM_LAYER_SUSY, g_idx, img)
)
return verdict, gr.update(value=bar_df, visible=show_bar), heatmaps
# βββββββββββββββββββββββββ UI βββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## πΌοΈΒ TwoβStage AI Fake DetectorΒ βΒ Explained with Heatβmaps")
with gr.Row():
img_in = gr.Image(type="numpy", label="Upload image")
btn = gr.Button("Detect")
txt_out = gr.Textbox(label="Verdict", interactive=False)
bar_out = gr.BarPlot(x="class", y="prob", title="Likely generator",
y_label="probability", visible=False)
gal_out = gr.Gallery(label="Heatβmaps", columns=2, height=320)
btn.click(pipeline, inputs=img_in, outputs=[txt_out, bar_out, gal_out])
demo.launch()
|