Orify-text-api / app.py
Sleepyriizi's picture
Update app.py
d6c4fbd verified
from __future__ import annotations
import os, re, html
from datetime import datetime, timedelta
from typing import List
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForSequenceClassification,
)
from huggingface_hub import hf_hub_download
from fastapi import FastAPI, HTTPException, Depends
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from fastapi.middleware.cors import CORSMiddleware
from jose import jwt, JWTError
from pydantic import BaseModel, Field
# ───────────────────────── torch shim ───────────────────────────────
if hasattr(torch, "compile"):
torch.compile = (lambda m=None,*_,**__: m if callable(m) else (lambda f: f)) # type: ignore
os.environ.setdefault("TORCHINDUCTOR_DISABLED", "1")
# ─────────────────────── remote‑code flag ───────────────────────────
os.environ.setdefault("HF_ALLOW_CODE_IMPORT", "1")
TOKEN_KW = {"trust_remote_code": True}
# ─────────────────────────── config ─────────────────────────────────
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
WEIGHT_REPO = "Sleepyriizi/Orify-Text-Detection-Weights"
FILE_MAP = {"ensamble_1":"ensamble_1","ensamble_2.bin":"ensamble_2.bin","ensamble_3":"ensamble_3"}
BASE_MODEL = "answerdotai/ModernBERT-base"
NUM_LABELS = 41
LABELS = {i:n for i,n in enumerate([
"13B","30B","65B","7B","GLM130B","bloom_7b","bloomz","cohere","davinci","dolly","dolly-v2-12b",
"flan_t5_base","flan_t5_large","flan_t5_small","flan_t5_xl","flan_t5_xxl","gemma-7b-it","gemma2-9b-it",
"gpt-3.5-turbo","gpt-35","gpt-4","gpt-4o","gpt-j","gpt-neox","human","llama3-70b","llama3-8b",
"mixtral-8x7b","opt-1.3b","opt-125m","opt-13b","opt-2.7b","opt-30b","opt-350m","opt-6.7b",
"opt-iml-30b","opt-iml-max-1.3b","t0-11b","t0-3b","text-davinci-002","text-davinci-003"])}
# ──────────────────────── JWT helpers ──────────────────────────────
SECRET_KEY = os.getenv("SECRET_KEY")
if not SECRET_KEY:
raise RuntimeError("SECRET_KEY env‑var not set – add it in Space settings → Secrets")
ALG="HS256"; EXP=24
oauth2 = OAuth2PasswordBearer(tokenUrl="token")
def _make_jwt(sub:str)->str:
payload={"sub":sub,"exp":datetime.utcnow()+timedelta(hours=EXP)}
return jwt.encode(payload,SECRET_KEY,algorithm=ALG)
def _verify_jwt(tok:str=Depends(oauth2)):
try:
return jwt.decode(tok,SECRET_KEY,algorithms=[ALG])["sub"]
except JWTError:
raise HTTPException(401,"Invalid or expired token")
# ─────────────────────── model bootstrap ───────────────────────────
print("🔄 Fetching ensemble weights…", flush=True)
paths={k:hf_hub_download(WEIGHT_REPO,f,resume_download=True) for k,f in FILE_MAP.items()}
print("🧩 Building ModernBERT backbone…", flush=True)
_cfg = AutoConfig.from_pretrained(BASE_MODEL, **TOKEN_KW); _cfg.num_labels = NUM_LABELS
_tok = AutoTokenizer.from_pretrained(BASE_MODEL, **TOKEN_KW)
_models: List[AutoModelForSequenceClassification] = []
for p in paths.values():
m = AutoModelForSequenceClassification.from_pretrained(
BASE_MODEL,
config=_cfg,
ignore_mismatched_sizes=True,
**TOKEN_KW,
)
m.load_state_dict(torch.load(p, map_location=DEVICE))
m.to(DEVICE).eval()
_models.append(m)
print(f"✅ Ensemble ready on {DEVICE}")
# ───────────────────────── helpers ─────────────────────────────────
def _tidy(t:str)->str:
t=t.replace("\r\n","\n").replace("\r", "\n")
t=re.sub(r"\n\s*\n+","\n\n",t)
t=re.sub(r"[ \t]+"," ",t)
t=re.sub(r"(\w+)-\n(\w+)",r"\1\2",t)
t=re.sub(r"(?<!\n)\n(?!\n)"," ",t)
return t.strip()
def _infer(seg:str):
inp=_tok(seg,return_tensors="pt",truncation=True,padding=True).to(DEVICE)
with torch.no_grad():
probs=torch.stack([torch.softmax(m(**inp).logits,1) for m in _models]).mean(0)[0]
ai_probs=probs.clone(); ai_probs[24]=0
ai=ai_probs.sum().item()*100; human=100-ai
top3=[LABELS[i] for i in torch.topk(ai_probs,3).indices.tolist()]
return human, ai, top3
# ───────────────────────── schemas ─────────────────────────────────
class TokenOut(BaseModel): access_token:str; token_type:str="bearer"
class AnalyseIn(BaseModel): text:str=Field(...,min_length=1)
class Line(BaseModel): text:str; ai:float; human:float; top3:List[str]; reason:str
class AnalyseOut(BaseModel): verdict:str; confidence:float; ai_avg:float; human_avg:float; per_line:List[Line]; highlight_html:str
# ───────────────────────── FastAPI app ─────────────────────────────
app=FastAPI(title="Orify Text Detector API",version="1.2.0")
app.add_middleware(CORSMiddleware,allow_origins=["*"],allow_methods=["*"],allow_headers=["*"])
@app.post("/token",response_model=TokenOut)
async def token(form:OAuth2PasswordRequestForm=Depends()):
return TokenOut(access_token=_make_jwt(form.username))
@app.post("/analyse",response_model=AnalyseOut)
async def analyse(body:AnalyseIn,_=Depends(_verify_jwt)):
lines=_tidy(body.text).split("\n"); html_parts=[]; per=[]; h_sum=ai_sum=n=0.0
for ln in lines:
if not ln.strip():
html_parts.append("<br>"); continue
n+=1; human,ai,top3=_infer(ln); h_sum+=human; ai_sum+=ai
cls="ai-line" if ai>human else "human-line"
tip=f"AI {ai:.2f}% – Top-3: {', '.join(top3)}" if ai>human else f"Human {human:.2f}%"
html_parts.append(f"<span class='{cls} prob-tooltip' title='{tip}'>{html.escape(ln)}</span>")
reason=(f"High AI likelihood ({ai:.1f}%) – fingerprint ≈ {top3[0]}" if ai>human else f"Lexical variety suggests human ({human:.1f}%)")
per.append(Line(text=ln,ai=ai,human=human,top3=top3,reason=reason))
human_avg=h_sum/n if n else 0; ai_avg=ai_sum/n if n else 0
verdict="AI-generated" if ai_avg>human_avg else "Human-written"; conf=max(human_avg,ai_avg)
badge=(f"<span class='ai-line' style='padding:6px 10px;font-weight:bold'>AI-generated {ai_avg:.2f}%</span>" if verdict=="AI-generated" else f"<span class='human-line' style='padding:6px 10px;font-weight:bold'>Human-written {human_avg:.2f}%</span>")
html_out=f"<h3>{badge}</h3><hr>"+"<br>".join(html_parts)
return AnalyseOut(verdict=verdict,confidence=conf,ai_avg=ai_avg,human_avg=human_avg,per_line=per,highlight_html=html_out)
# ─────────────────────────── entrypoint ────────────────────────────
if __name__ == "__main__":
import uvicorn, sys
port=int(os.environ.get("PORT", "7860"))
uvicorn.run("app:app", host="0.0.0.0", port=port, log_level="info", reload=False)