Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, pipeline
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# === CARREGAR OS MODELOS GERADORES ===
|
7 |
+
generator_1_name = "pierreguillou/gpt2-small-portuguese"
|
8 |
+
generator_2_name = "pierreguillou/gpt2-small-portuguese" # Usando o mesmo por simplicidade/teste
|
9 |
+
|
10 |
+
tokenizer_1 = AutoTokenizer.from_pretrained(generator_1_name)
|
11 |
+
model_1 = AutoModelForCausalLM.from_pretrained(generator_1_name)
|
12 |
+
|
13 |
+
tokenizer_2 = AutoTokenizer.from_pretrained(generator_2_name)
|
14 |
+
model_2 = AutoModelForCausalLM.from_pretrained(generator_2_name)
|
15 |
+
|
16 |
+
# === CARREGAR MODELO ÁRBITRO (BERT) ===
|
17 |
+
judge_model_name = "neuralmind/bert-base-portuguese-cased"
|
18 |
+
judge_tokenizer = AutoTokenizer.from_pretrained(judge_model_name)
|
19 |
+
judge_model = AutoModelForSequenceClassification.from_pretrained(judge_model_name, num_labels=2)
|
20 |
+
|
21 |
+
# Classificador de similaridade (baseado em relevância para o prompt)
|
22 |
+
def score_response(prompt, response):
|
23 |
+
inputs = judge_tokenizer(prompt, response, return_tensors="pt", truncation=True, padding=True)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = judge_model(**inputs)
|
26 |
+
score = torch.softmax(outputs.logits, dim=1)[0][1].item() # Probabilidade da classe "boa"
|
27 |
+
return score
|
28 |
+
|
29 |
+
# Gerar resposta com modelo
|
30 |
+
def generate_response(model, tokenizer, prompt):
|
31 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
32 |
+
output_ids = model.generate(input_ids, max_new_tokens=60, num_return_sequences=1, do_sample=True)
|
33 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
34 |
+
|
35 |
+
# Função principal
|
36 |
+
def chatbot(prompt):
|
37 |
+
response_1 = generate_response(model_1, tokenizer_1, prompt)
|
38 |
+
response_2 = generate_response(model_2, tokenizer_2, prompt)
|
39 |
+
|
40 |
+
score_1 = score_response(prompt, response_1)
|
41 |
+
score_2 = score_response(prompt, response_2)
|
42 |
+
|
43 |
+
if score_1 > score_2:
|
44 |
+
final = response_1
|
45 |
+
chosen = "Resposta 1"
|
46 |
+
else:
|
47 |
+
final = response_2
|
48 |
+
chosen = "Resposta 2"
|
49 |
+
|
50 |
+
return (
|
51 |
+
prompt,
|
52 |
+
response_1,
|
53 |
+
response_2,
|
54 |
+
chosen,
|
55 |
+
final
|
56 |
+
)
|
57 |
+
|
58 |
+
# === INTERFACE GRADIO ===
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=chatbot,
|
61 |
+
inputs=gr.Textbox(label="Digite sua pergunta"),
|
62 |
+
outputs=[
|
63 |
+
gr.Textbox(label="Prompt"),
|
64 |
+
gr.Textbox(label="Resposta 1"),
|
65 |
+
gr.Textbox(label="Resposta 2"),
|
66 |
+
gr.Textbox(label="Resposta escolhida pelo árbitro"),
|
67 |
+
gr.Textbox(label="Resposta final exibida")
|
68 |
+
],
|
69 |
+
title="Chatbot em Cascata (Português)",
|
70 |
+
description="Dois modelos geram respostas e um árbitro (BERT) escolhe a melhor."
|
71 |
+
)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
iface.launch()
|