File size: 3,907 Bytes
2486a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from rembg import remove
import torch

# ===== εˆε§‹εŒ–ζ¨‘εž‹ =====
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

if torch.cuda.is_available():
    pipe = DiffusionPipeline.from_pretrained(
        "stabilityai/sdxl-turbo", 
        torch_dtype=torch.float16, 
        variant="fp16",
        use_safetensors=True
    )
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else:
    pipe = DiffusionPipeline.from_pretrained(
        "stabilityai/sdxl-turbo", 
        use_safetensors=True
    )
    pipe = pipe.to(device)

# ===== εŠŸθƒ½ε‡½ζ•Έ =====
def generate_anime(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=f"{prompt}, Anime",
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    return image

def remove_background(input_img):
    if input_img is None:
        return None
    return remove(input_img)

# ===== Gradio δ»‹ι’θ¨­θ¨ˆ =====
examples = [
    "A well-behaved schoolgirl with glasses",
    "Astronaut in a jungle, cold color palette, 8k",
    "An astronaut riding a green horse",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## 🧠 Anime Character Generator + Background Remover")

        # Prompt row
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Describe your anime character...",
                container=False,
            )
            run_button = gr.Button("🎨 Generate Anime")

        # Output image (before and after remove background)
        with gr.Row():
            result_img = gr.Image(label="Generated Image")
            removed_img = gr.Image(label="Background Removed")

        # Advanced settings
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True
            )

            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)

            with gr.Row():
                guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0)
                num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=12, step=1, value=2)

        # η―„δΎ‹ζŒ‰ιˆ•ε€
        gr.Markdown("#### ✨ Prompt Examples")
        with gr.Row():
            for example in examples:
                gr.Button(example).click(lambda x=example: x, outputs=prompt)

        # δΈ»ζŒ‰ιˆ• callback
        run_button.click(
            fn=generate_anime,
            inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
            outputs=[result_img]
        ).then(
            fn=remove_background,
            inputs=[result_img],
            outputs=[removed_img]
        )

demo.queue().launch(share=True)