Sam-reason-S2 / app.py
boning123's picture
Update app.py
53c5f9b verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "Smilyai-labs/Sam-reason-S2" # or your local path
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.eval()
# Chat function
def chat_with_model(user_input, history):
if history is None:
history = []
# Build conversation string for context
conversation = ""
for msg in history:
conversation += f"User: {msg['content']}\nSam:"
if msg['role'] == "assistant":
conversation += f" {msg['content']}\n"
conversation += f"User: {user_input}\nSam:"
# Encode and generate
inputs = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=1024)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_new_tokens=150,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
response_text = decoded.split("Sam:")[-1].strip()
# Add new message to chat history
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": response_text})
return "", history
# Gradio UI
def create_chatbot_interface():
with gr.Blocks() as demo:
gr.Markdown("# πŸ’¬ Chat with **Sam** (SmilyAI's Reasoning LLM 2nd generation)")
chatbot = gr.Chatbot(label="Chat", type="messages")
user_input = gr.Textbox(placeholder="Type your message...", show_label=False)
send_btn = gr.Button("Send")
send_btn.click(
chat_with_model,
inputs=[user_input, chatbot],
outputs=[user_input, chatbot]
)
return demo
# Launch
demo = create_chatbot_interface()
demo.launch()