File size: 8,009 Bytes
e9907ee
 
 
 
 
 
 
 
 
 
 
 
08f1855
e9907ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d04dd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9907ee
d04dd91
 
e9907ee
 
abfee73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e04988e
079c35d
 
abfee73
 
 
 
 
 
 
 
 
 
3bd3796
abfee73
 
 
08a0e60
079c35d
08a0e60
abfee73
079c35d
abfee73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from dotenv import load_dotenv
from openai import OpenAI
import json
import os
from pypdf import PdfReader
import gradio as gr
import csv

# Load environment variables
load_dotenv(override=True)

GEMINI_BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
google_api_key = os.getenv("GOOGLE_API_KEY")
gemini = OpenAI(base_url=GEMINI_BASE_URL, api_key=google_api_key)

# CSV files for logging
USER_CSV = "user_details.csv"
UNKNOWN_CSV = "unknown_questions.csv"

# Ensure CSV files exist with headers
for file, headers in [(USER_CSV, ["email", "name", "notes"]),
                      (UNKNOWN_CSV, ["question"])]:
    if not os.path.exists(file):
        with open(file, "w", newline="", encoding="utf-8") as f:
            writer = csv.writer(f)
            writer.writerow(headers)

# Functions to log user details and unknown questions
def record_user_details(email, name="Name not provided", notes="not provided"):
    with open(USER_CSV, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow([email, name, notes])
    return {"recorded": "ok"}

def record_unknown_question(question):
    with open(UNKNOWN_CSV, "a", newline="", encoding="utf-8") as f:
        writer = csv.writer(f)
        writer.writerow([question])
    return {"recorded": "ok"}

# JSON definitions for tools
record_user_details_json = {
    "name": "record_user_details",
    "description": "Record user info when they provide email",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {"type": "string", "description": "The user's email"},
            "name": {"type": "string", "description": "User's name"},
            "notes": {"type": "string", "description": "Extra info"}
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Record any unanswered question",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {"type": "string", "description": "The question not answered"},
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [
    {"type": "function", "function": record_user_details_json},
    {"type": "function", "function": record_unknown_question_json}
]

class Me:
    def __init__(self):
        self.openai = gemini
        self.name = "SnehaLeela"

        # Load profile JSON
        with open("profile.json", "r", encoding="utf-8") as f:
            self.profile = json.load(f)

        # Set attributes for easier access
        self.personal_info = self.profile.get("personal_info", {})
        self.expertise = self.profile.get("expertise", [])
        self.experience = self.profile.get("experience", [])
        self.education = self.profile.get("education", [])
        self.friends = self.profile.get("friends", [])

    # Handle tool calls
    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool", "content": json.dumps(result), "tool_call_id": tool_call.id})
        return results

    # System prompt for LLM
    def system_prompt(self):
        # Combine experience into text
        experience_text = ""
        for company in self.experience:
            experience_text += f"{company['company']}"
            if 'location' in company:
                experience_text += f" ({company['location']})"
            for role in company.get('roles', []):
                experience_text += f"\n- {role['title']} ({role.get('years', '')})"
                for hl in role.get('highlights', []):
                    experience_text += f"\n  • {hl}"
            experience_text += "\n"

        expertise_text = ", ".join(self.expertise)

        education_text = ""
        if hasattr(self, 'education') and self.education:
            highest = self.education[0].get("highest_degree", {})
            education_text = f"{highest.get('degree','')} in {highest.get('field_of_study','')} from {highest.get('university','')} ({highest.get('start_year','')}{highest.get('end_year','')})"
        
        # Optional: prepare friends text for fun
        friends_text = ""
        if hasattr(self, 'friends') and self.friends:
            friends_list = []
            for f in self.friends:
                friends_list.append(f"{f.get('Name','')} ({f.get('Company','')}): {f.get('Description','')}")
            friends_text = "\n".join(friends_list)
        
        system_prompt = (
            f"You are acting as {self.personal_info['name']} (aka {self.personal_info.get('nickname','')}). "
            f"Answer questions about {self.personal_info['name']}'s career, background, skills, and experience. "
            f"Represent {self.personal_info['name']} faithfully. "
            f"If you don't know an answer, use record_unknown_question tool. "
            f"If the user engages in discussion, try to steer them towards providing their email using record_user_details tool.\n\n"
            f"## Summary:\n{self.personal_info['summary']}\n\n"
            f"## Interests:\n{', '.join(self.personal_info.get('personal_interests', []))}\n\n"
            f"## Travel History:\n{', '.join(self.personal_info.get('travel_history', []))}\n\n"
            f"## Education:\n{education_text}\n\n"
            f"## Expertise:\n{expertise_text}\n\n"
            f"## Experience:\n{experience_text}\n\n"
            f"## Friends (for fun):\n{friends_text}\n\n"
            f"## LinkedIn Profile:\nhttps://www.linkedin.com/in/sneha-leela-0a450349/\n\n"
            f"Chat with the user staying in character as {self.personal_info['name']}."
        )
        return system_prompt

   
    # Main chat function
    def chat(self, message, history):
        # ✅ Convert Gradio's history (list of lists) into role/content dicts
        formatted_history = []
        for user_msg, bot_msg in history:
            formatted_history.append({"role": "user", "content": user_msg})
            formatted_history.append({"role": "assistant", "content": bot_msg})

        messages = (
            [{"role": "system", "content": self.system_prompt()}]
            + formatted_history
            + [{"role": "user", "content": message}]
        )

        done = False
        while not done:
            response = self.openai.chat.completions.create(
                model="gemini-2.5-flash-preview-05-20",
                messages=messages,
                tools=tools
            )
            if response.choices[0].finish_reason == "tool_calls":
                message = response.choices[0].message
                tool_calls = message.tool_calls
                results = self.handle_tool_call(tool_calls)
                messages.append(message)
                messages.extend(results)
            else:
                done = True

        return response.choices[0].message.content


# Custom CSS with your local image
css_code = """
div { 
    background-image: url("file/Gemini_Generated.png");  /* Your local image */
    background-size: cover;
    background-position: center;
    background-repeat: no-repeat;
}

.gradio-container {
    background-color: rgba(255, 255, 255, 0.6);  /* Optional overlay for readability */
}

.chat-message.user {
    background-color: rgba(208, 230, 255, 0.8);
}

.chat-message.bot {
    background-color: rgba(224, 255, 224, 0.8);
}
"""

# Launch Gradio interface
if __name__ == "__main__":
    me = Me()
    #gr.ChatInterface(me.chat, type="messages",theme="NoCrypt/miku",).launch(share=True)
    gr.ChatInterface(
        me.chat,
        theme="NoCrypt/miku",
        title="SnehaLeela's Careerbot",
        #css=css_code
    ).launch(share=True)