Spaces:
Sleeping
Sleeping
File size: 9,033 Bytes
9e3182d 235e7c7 bebc496 9e3182d 68f40ec bebc496 b9d2659 235e7c7 c849c89 8fd86b6 9e3182d 6e7a5e3 9e3182d 9a8ac22 f2fdc48 9a8ac22 f2fdc48 9a8ac22 9e3182d 8fd86b6 9e3182d 9a8ac22 8fd86b6 9a8ac22 a50e211 9a8ac22 a50e211 9a8ac22 8fd86b6 9a8ac22 b9bf9b2 9a8ac22 8fd86b6 9a8ac22 8fd86b6 9a8ac22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
os.environ["NUMBA_DISABLE_CACHE"] = "1"
import os
import gradio as gr
from docx import Document
from TTS.api import TTS
import tempfile
import zipfile
from io import BytesIO
import re
from pydub import AudioSegment
final_audio = AudioSegment.empty()
# Voice model
VOICE_MODEL = "tts_models/en/vctk/vits"
# Embedded metadata (from your file)
SPEAKER_METADATA = {
300: { "age": 23, "gender": "F", "accent": "American"},
271: { "age": 19, "gender": "M", "accent": "Scottish"},
287: { "age": 23, "gender": "M", "accent": "English"},
262: { "age": 23, "gender": "F", "accent": "Scottish"},
284: { "age": 20, "gender": "M", "accent": "Scottish"},
297: { "age": 20, "gender": "F", "accent": "American"},
227: { "age": 38, "gender": "M", "accent": "English"},
246: { "age": 22, "gender": "M", "accent": "Scottish"},
225: { "age": 23, "gender": "F", "accent": "English"},
259: { "age": 23, "gender": "M", "accent": "English"},
252: { "age": 22, "gender": "M", "accent": "Scottish"},
231: { "age": 23, "gender": "F", "accent": "English"},
266: { "age": 22, "gender": "F", "accent": "Irish"},
241: { "age": 21, "gender": "M", "accent": "Scottish"},
312: { "age": 19, "gender": "F", "accent": "Canadian"},
329: { "age": 23, "gender": "F", "accent": "American"},
232: { "age": 23, "gender": "M", "accent": "English"},
305: { "age": 19, "gender": "F", "accent": "American"},
311: { "age": 21, "gender": "M", "accent": "American"},
301: { "age": 23, "gender": "F", "accent": "American"},
304: { "age": 22, "gender": "M", "accent": "NorthernIrish"},
310: { "age": 21, "gender": "F", "accent": "American"},
260: { "age": 21, "gender": "M", "accent": "Scottish"},
315: { "age": 18, "gender": "M", "accent": "American"},
374: { "age": 28, "gender": "M", "accent": "Australian"},
364: { "age": 23, "gender": "M", "accent": "Irish"},
269: { "age": 20, "gender": "F", "accent": "English"},
345: { "age": 22, "gender": "M", "accent": "American"},
326: { "age": 26, "gender": "M", "accent": "Australian"},
343: { "age": 27, "gender": "F", "accent": "Canadian"},
230: { "age": 22, "gender": "F", "accent": "English"},
376: { "age": 22, "gender": "M", "accent": "Indian"},
240: { "age": 21, "gender": "F", "accent": "English"},
298: { "age": 19, "gender": "M", "accent": "Irish"},
272: { "age": 23, "gender": "M", "accent": "Scottish"},
248: { "age": 23, "gender": "F", "accent": "Indian"},
264: { "age": 23, "gender": "F", "accent": "Scottish"},
250: { "age": 22, "gender": "F", "accent": "English"},
292: { "age": 23, "gender": "M", "accent": "NorthernIrish"},
237: { "age": 22, "gender": "M", "accent": "Scottish"},
363: { "age": 22, "gender": "M", "accent": "Canadian"},
313: { "age": 24, "gender": "F", "accent": "Irish"},
285: { "age": 21, "gender": "M", "accent": "Scottish"},
268: { "age": 23, "gender": "F", "accent": "English"},
302: { "age": 20, "gender": "M", "accent": "Canadian"},
261: { "age": 26, "gender": "F", "accent": "NorthernIrish"},
336: { "age": 18, "gender": "F", "accent": "SouthAfrican"},
288: { "age": 22, "gender": "F", "accent": "Irish"},
226: { "age": 22, "gender": "M", "accent": "English"},
277: { "age": 23, "gender": "F", "accent": "English"},
360: { "age": 19, "gender": "M", "accent": "American"},
257: { "age": 24, "gender": "F", "accent": "English"},
254: { "age": 21, "gender": "M", "accent": "English"},
339: { "age": 21, "gender": "F", "accent": "American"},
323: { "age": 19, "gender": "F", "accent": "SouthAfrican"},
255: { "age": 19, "gender": "M", "accent": "Scottish"},
249: { "age": 22, "gender": "F", "accent": "Scottish"},
293: { "age": 22, "gender": "F", "accent": "NorthernIrish"},
244: { "age": 22, "gender": "F", "accent": "English"},
245: { "age": 25, "gender": "M", "accent": "Irish"},
361: { "age": 19, "gender": "F", "accent": "American"},
314: { "age": 26, "gender": "F", "accent": "SouthAfrican"},
308: { "age": 18, "gender": "F", "accent": "American"},
229: { "age": 23, "gender": "F", "accent": "English"},
341: { "age": 26, "gender": "F", "accent": "American"},
275: { "age": 23, "gender": "M", "accent": "Scottish"},
263: { "age": 22, "gender": "M", "accent": "Scottish"},
253: { "age": 22, "gender": "F", "accent": "Welsh"},
299: { "age": 25, "gender": "F", "accent": "American"},
316: { "age": 20, "gender": "M", "accent": "Canadian"},
282: { "age": 23, "gender": "F", "accent": "English"},
362: { "age": 29, "gender": "F", "accent": "American"},
294: { "age": 33, "gender": "F", "accent": "American"},
274: { "age": 22, "gender": "M", "accent": "English"},
279: { "age": 23, "gender": "M", "accent": "English"},
281: { "age": 29, "gender": "M", "accent": "Scottish"},
286: { "age": 23, "gender": "M", "accent": "English"},
258: { "age": 22, "gender": "M", "accent": "English"},
247: { "age": 22, "gender": "M", "accent": "Scottish"},
351: { "age": 21, "gender": "F", "accent": "NorthernIrish"},
283: { "age": 24, "gender": "F", "accent": "Irish"},
334: { "age": 18, "gender": "M", "accent": "American"},
333: { "age": 19, "gender": "F", "accent": "American"},
295: { "age": 23, "gender": "F", "accent": "Irish"},
330: { "age": 26, "gender": "F", "accent": "American"},
335: { "age": 25, "gender": "F", "accent": "NewZealand"},
228: { "age": 22, "gender": "F", "accent": "English"},
267: { "age": 23, "gender": "F", "accent": "English"},
273: { "age": 18, "gender": "F", "accent": "English"}
}
def clean_text(text):
# Remove hyperlinks
return re.sub(r'http[s]?://\S+', '', text)
def extract_paragraphs_from_docx(docx_file):
document = Document(docx_file.name)
paragraphs = [p.text.strip() for p in document.paragraphs if p.text.strip()]
return [clean_text(p) for p in paragraphs]
def list_speaker_choices():
return [f"{sid} | {meta['gender']} | {meta['accent']}" for sid, meta in SPEAKER_METADATA.items()]
def get_speaker_id_from_label(label):
return label.split('|')[0].strip()
def generate_sample_audio(sample_text, speaker_label):
if len(sample_text) > 500:
raise gr.Error("Sample text exceeds 500 characters.")
speaker_id = get_speaker_id_from_label(speaker_label)
model = TTS("tts_models/en/vctk/vits")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
model.tts_to_file(text=sample_text, speaker="p"+speaker_id, file_path=tmp_wav.name)
return tmp_wav.name
def generate_audio(docx_file, speaker_label):
speaker_id = get_speaker_id_from_label(speaker_label)
model = TTS("tts_models/en/vctk/vits")
paragraphs = extract_paragraphs_from_docx(docx_file)
combined_audio = AudioSegment.empty()
temp_files = []
try:
for idx, para in enumerate(paragraphs):
tmp = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
model.tts_to_file(text=para, speaker="p"+speaker_id, file_path=tmp.name)
audio_chunk = AudioSegment.from_wav(tmp.name)
combined_audio += audio_chunk
temp_files.append(tmp.name)
tmp.close()
except Exception as e:
print("Generation interrupted. Saving partial output.", e)
output_dir = tempfile.mkdtemp()
final_output_path = os.path.join(output_dir, "final_output.wav")
combined_audio.export(final_output_path, format="wav")
zip_path = os.path.join(output_dir, "output.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(final_output_path, arcname="final_output.wav")
for f in temp_files:
os.remove(f)
return zip_path
# --- UI ---
speaker_choices = list_speaker_choices()
with gr.Blocks() as demo:
gr.Markdown("## 📄 TTS Voice Generator with Paragraph-Wise Processing")
with gr.Row():
speaker_dropdown = gr.Dropdown(label="Select Voice", choices=speaker_choices)
with gr.Row():
sample_textbox = gr.Textbox(label="Enter Sample Text (Max 500 characters)", max_lines=5)
sample_button = gr.Button("Generate Sample")
clear_button = gr.Button("Clear Sample")
sample_audio = gr.Audio(label="Sample Output", type="filepath")
sample_button.click(fn=generate_sample_audio, inputs=[sample_textbox, speaker_dropdown], outputs=[sample_audio])
clear_button.click(fn=lambda: None, inputs=[], outputs=[sample_audio])
with gr.Row():
docx_input = gr.File(label="Upload DOCX File", file_types=[".docx"])
generate_button = gr.Button("Generate Full Audio")
download_output = gr.File(label="Download Output Zip")
generate_button.click(fn=generate_audio, inputs=[docx_input, speaker_dropdown], outputs=[download_output])
if __name__ == "__main__":
demo.launch()
|