File size: 22,111 Bytes
4929fb2
9b5b26a
 
 
c19d193
d139b43
655eb16
 
d139b43
6aae614
1bfef43
8fe992b
9b5b26a
 
d139b43
 
 
3cee4ad
 
 
8331554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3a261
4929fb2
 
 
b72b866
ad924eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
d139b43
ad924eb
9b5b26a
ad924eb
 
9b5b26a
ad924eb
 
 
 
 
655eb16
 
4bd6f35
 
116bda5
 
 
4bd6f35
116bda5
 
 
4bd6f35
116bda5
 
 
4bd6f35
 
13b9d4a
655eb16
 
 
13b9d4a
40e5f48
9e2fccb
 
 
655eb16
 
4bd6f35
655eb16
4bd6f35
655eb16
116bda5
6220e54
9e2fccb
6220e54
 
9e2fccb
13b9d4a
e95248e
13b9d4a
 
9e2fccb
13b9d4a
0be1b82
e95248e
 
4bd6f35
13b9d4a
9e2fccb
 
dfafa93
9e2fccb
dfafa93
4bd6f35
dfafa93
4bd6f35
dfafa93
4bd6f35
dfafa93
9e2fccb
 
40e5f48
116bda5
 
 
 
 
 
 
8010a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116bda5
 
 
8010a87
 
 
116bda5
 
 
 
 
 
 
9e2fccb
6220e54
 
4bd6f35
6220e54
8010a87
 
 
 
 
 
dfafa93
40e5f48
 
 
 
8010a87
 
40e5f48
4bd6f35
8010a87
 
 
 
 
9e2fccb
6220e54
8010a87
9e2fccb
40e5f48
9e2fccb
4bd6f35
9e2fccb
13b9d4a
9e2fccb
4bd6f35
9e2fccb
6220e54
 
9e2fccb
6220e54
 
13b9d4a
4bd6f35
 
655eb16
e95248e
 
4bd6f35
 
655eb16
894372d
 
6220e54
894372d
 
 
4bd6f35
 
6220e54
4bd6f35
6220e54
4bd6f35
894372d
 
4bd6f35
894372d
 
829cff2
4bd6f35
829cff2
 
894372d
4bd6f35
829cff2
4bd6f35
894372d
 
 
 
829cff2
d8d214d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
9e2fccb
1733fa0
8c01ffb
1733fa0
 
f3ea50e
24432a6
 
 
 
 
 
 
 
 
7246f64
24432a6
 
 
 
 
 
7246f64
24432a6
 
 
7246f64
 
d7409ef
 
7246f64
 
 
 
 
 
 
 
 
 
24432a6
d98a17f
 
24432a6
 
 
 
 
 
7246f64
 
 
24432a6
 
1733fa0
24432a6
1733fa0
7246f64
 
 
 
d7409ef
7246f64
 
 
d98a17f
24432a6
 
 
 
 
 
7246f64
 
 
24432a6
 
1733fa0
24432a6
 
d98a17f
1733fa0
24432a6
8c01ffb
1733fa0
 
 
 
 
 
d94f78e
1733fa0
8c01ffb
8fe992b
655eb16
53ed647
8b3a261
24432a6
53ed647
655eb16
d8d214d
4929fb2
24432a6
53ed647
1733fa0
 
8c01ffb
d94f78e
53ed647
280bb50
24432a6
861422e
8fe992b
 
24432a6
 
 
53ed647
8331554
53ed647
 
 
 
 
 
 
8331554
9e2fccb
 
3cee4ad
fb6b26e
3cee4ad
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool, VisitWebpageTool
import datetime
import requests
import pytz
import yaml
import os
from datasets import Dataset
from huggingface_hub import HfApi
from openai import OpenAI
from tools.final_answer import FinalAnswerTool
from huggingface_hub import InferenceClient

from Gradio_UI import GradioUI

# Define the Perplexity system prompt
Perplex_Assistant_Prompt = """You are a helpful AI assistant that searches the web for accurate information."""

# Set up API key in environment variable as expected by HfApiModel
os.environ["HUGGINGFACE_API_TOKEN"] = os.getenv("HUGGINGFACE_API_KEY", "")

# Initialize search tools with fallback capability
try:
    # Try DuckDuckGo first (default)
    print("Initializing DuckDuckGo search tool...")
    ddg_search_tool = DuckDuckGoSearchTool(max_results=10)
    
    # Test the tool with a simple query
    test_result = ddg_search_tool("test query")
    print("DuckDuckGo search tool initialized successfully.")
    
    # Use DuckDuckGo as the primary search tool
    primary_search_tool = ddg_search_tool
    search_tool_name = "DuckDuckGo"
    
except Exception as e:
    print(f"Error initializing DuckDuckGo search tool: {str(e)}")
    print("Falling back to Google search tool...")
    
    try:
        # Import GoogleSearchTool only if needed
        from smolagents import GoogleSearchTool
        google_search_tool = GoogleSearchTool()
        
        # Test the Google search tool
        test_result = google_search_tool("test query")
        print("Google search tool initialized successfully.")
        
        # Use Google as the fallback search tool
        primary_search_tool = google_search_tool
        search_tool_name = "Google"
        
    except Exception as google_error:
        print(f"Error initializing Google search tool: {str(google_error)}")
        print("WARNING: No working search tool available. Agent functionality will be limited.")
        # Create a minimal replacement that returns an explanatory message
        def search_fallback(query):
            return f"Search functionality unavailable. Both DuckDuckGo and Google search tools failed to initialize. Query was: {query}"
        
        primary_search_tool = search_fallback
        search_tool_name = "Unavailable"

# Initialize the VisitWebpageTool
visit_webpage_tool = VisitWebpageTool()

#@weave.op()
def tracked_perplexity_call(prompt: str, system_messages: str, model_name: str = "sonar-pro", assistant_meta: bool = False):
    """Enhanced Perplexity API call with explicit model tracking."""
    client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai")
    system_message = Perplex_Assistant_Prompt
    if assistant_meta:
        system_message += f"\n\n{system_messages}"
    
    # Minimal parameters for Perplexity
    return client.chat.completions.create(
        model=model_name,
        messages=[
            {"role": "system", "content": system_message},
            {"role": "user", "content": prompt},
        ],
        stream=False,
    ).choices[0].message.content

@tool
def Sonar_Web_Search_Tool(arg1: str, arg2: str) -> str:
    """A tool that accesses Perplexity Sonar to search the web when the answer requires or would benefit from a real world web reference. 
    Args:
        arg1: User Prompt
        arg2: Details on the desired web search results as system message for sonar web search
    """
    try:
        sonar_response = tracked_perplexity_call(arg1, arg2)
        return sonar_response
    except Exception as e:
        return f"Error using Sonar Websearch tool '{arg1} {arg2}': {str(e)}"
    

def parse_json(text: str):
    """
    A safer JSON parser using ast.literal_eval.
    Converts JSON-like strings to Python objects without executing code.
    Handles common JSON literals (true, false, null) by converting them to Python equivalents.
    """
    # Replace JSON literals with Python equivalents
    prepared_text = text.replace("true", "True").replace("false", "False").replace("null", "None")
    
    try:
        import ast
        return ast.literal_eval(prepared_text)
    except (SyntaxError, ValueError) as e:
        raise ValueError(f"Failed to parse JSON: {str(e)}")

def Dataset_Creator_Function(dataset_name: str, conversation_data: str) -> str:
    """Creates and pushes a dataset to Hugging Face with the conversation history.
    
    Args:
        dataset_name: Name for the dataset (will be prefixed with username)
        conversation_data: String representing the conversation data. Can be:
            - JSON array of objects (each object becomes a row)
            - Pipe-separated values (first row as headers, subsequent rows as values)
            - Plain text (stored in a single 'text' column)
    
    Returns:
        URL of the created dataset or error message along with the log output.
    """
    log_text = ""
    try:
        # Required imports
        import pandas as pd
        from datasets import Dataset, DatasetDict
        from huggingface_hub import HfApi
        
        # Get API key
        api_key = os.getenv("HF_API_KEY") or os.getenv("HUGGINGFACE_API_KEY")
        if not api_key:
            return "Error: No Hugging Face API key found in environment variables"
        
        # Set fixed username
        username = "Misfits-and-Machines"
        safe_dataset_name = dataset_name.replace(" ", "_").lower()
        repo_id = f"{username}/{safe_dataset_name}"
        
        log_text += f"Creating dataset: {repo_id}\n"
        
        # Ensure repository exists
        hf_api = HfApi(token=api_key)
        try:
            if not hf_api.repo_exists(repo_id=repo_id, repo_type="dataset"):
                hf_api.create_repo(repo_id=repo_id, repo_type="dataset")
                log_text += f"Created repository: {repo_id}\n"
            else:
                log_text += f"Repository already exists: {repo_id}\n"
        except Exception as e:
            log_text += f"Note when checking/creating repository: {str(e)}\n"
        
        # Process input data
        created_ds = None
        try:
            # Try parsing as JSON using the safer parse_json function
            try:
                json_data = parse_json(conversation_data)
                
                # Process based on data structure
                if isinstance(json_data, list) and all(isinstance(item, dict) for item in json_data):
                    log_text += f"Processing JSON array with {len(json_data)} items\n"
                    
                    # Create a dataset with columns for all keys in the first item
                    # This ensures the dataset structure is consistent
                    first_item = json_data[0]
                    columns = list(first_item.keys())
                    log_text += f"Detected columns: {columns}\n"
                    
                    # Initialize data dictionary with empty lists for each column
                    data_dict = {col: [] for col in columns}
                    
                    # Process each item
                    for item in json_data:
                        for col in columns:
                            # Get the value for this column, or empty string if missing
                            value = item.get(col, "")
                            data_dict[col].append(value)
                    
                    # Debug output to verify data structure
                    for col in columns:
                        log_text += f"Column '{col}' has {len(data_dict[col])} entries\n"
                        
                    # Create dataset from dictionary
                    ds = Dataset.from_dict(data_dict)
                    log_text += f"Created dataset with {len(ds)} rows\n"
                    created_ds = DatasetDict({"train": ds})
                elif isinstance(json_data, dict):
                    log_text += "Processing single JSON object\n"
                    # For a single object, create a dataset with one row
                    data_dict = {k: [v] for k, v in json_data.items()}
                    ds = Dataset.from_dict(data_dict)
                    created_ds = DatasetDict({"train": ds})
                else:
                    raise ValueError("JSON not recognized as array or single object")
            except Exception as json_error:
                log_text += f"Not processing as JSON: {str(json_error)}\n"
                raise json_error  # Propagate to next handler
        except Exception:
            # Try pipe-separated format
            lines = conversation_data.strip().split('\n')
            if '|' in conversation_data and len(lines) > 1:
                log_text += "Processing as pipe-separated data\n"
                headers = [h.strip() for h in lines[0].split('|')]
                log_text += f"Detected headers: {headers}\n"
                
                # Initialize data dictionary
                data_dict = {header: [] for header in headers}
                
                # Process each data row
                for i, line in enumerate(lines[1:], 1):
                    if not line.strip():
                        continue
                    values = [val.strip() for val in line.split('|')]
                    if len(values) == len(headers):
                        for j, header in enumerate(headers):
                            data_dict[header].append(values[j])
                    else:
                        log_text += f"Warning: Skipping row {i} (column count mismatch)\n"
                
                # Create dataset from dictionary
                if all(len(values) > 0 for values in data_dict.values()):
                    ds = Dataset.from_dict(data_dict)
                    log_text += f"Created dataset with {len(ds)} rows\n"
                    created_ds = DatasetDict({"train": ds})
                else:
                    log_text += "No valid rows found in pipe-separated data\n"
                    created_ds = DatasetDict({"train": Dataset.from_dict({"text": [conversation_data]})})
            else:
                # Fallback for plain text
                log_text += "Processing as plain text\n"
                created_ds = DatasetDict({"train": Dataset.from_dict({"text": [conversation_data]})})
        
        # Push using the DatasetDict push_to_hub method.
        log_text += f"Pushing dataset to {repo_id}\n"
        created_ds.push_to_hub(
            repo_id=repo_id,
            token=api_key,
            commit_message=f"Upload dataset: {dataset_name}"
        )
        
        dataset_url = f"https://huggingface.co/datasets/{repo_id}"
        log_text += f"Dataset successfully pushed to: {dataset_url}\n"
        return f"Successfully created dataset at {dataset_url}\nLogs:\n{log_text}"
    except Exception as e:
        import traceback
        error_trace = traceback.format_exc()
        log_text += f"Dataset creation error: {str(e)}\n{error_trace}\n"
        return f"Error creating dataset: {str(e)}\nLogs:\n{log_text}"

@tool
def Dataset_Creator_Tool(dataset_name: str, conversation_data: str) -> str:
    """A tool that creates and pushes a dataset to Hugging Face.
    
    Args:
        dataset_name: Name for the dataset (will be prefixed with 'Misfits-and-Machines/')
        conversation_data: Data content to save in the dataset. Formats supported:
            1. JSON array of objects – Each object becomes a row (keys as columns).
               Example: [{"name": "Product A", "brand": "Company X"}, {"name": "Product B", "brand": "Company Y"}]
            2. Pipe-separated values – First row as headers, remaining rows as values.
               Example: "name | brand\nProduct A | Company X\nProduct B | Company Y"
            3. Plain text – Stored in a single 'text' column.
    
    Returns:
        A link to the created dataset on the Hugging Face Hub or an error message, along with log details.
    """
    try:
        log_text = f"Creating dataset '{dataset_name}' with {len(conversation_data)} characters of data\n"
        log_text += f"Dataset will be created at Misfits-and-Machines/{dataset_name.replace(' ', '_').lower()}\n"
        
        # Call Dataset_Creator_Function directly without trying to define any new functions
        result = Dataset_Creator_Function(dataset_name, conversation_data)
        log_text += f"Dataset creation result: {result}\n"
        
        return log_text
    except Exception as e:
        import traceback
        error_trace = traceback.format_exc()
        return f"Error using Dataset Creator tool: {str(e)}\n{error_trace}"

def verify_dataset_exists(repo_id: str) -> dict:
    """Verify that a dataset exists and is valid on the Hugging Face Hub.
    
    Args:
        repo_id: Full repository ID in format "username/dataset_name"
    
    Returns:
        Dict with "exists" boolean and "message" string
    """
    try:
        # Check if dataset exists using the datasets-server API
        api_url = f"https://datasets-server.huggingface.co/is-valid?dataset={repo_id}"
        response = requests.get(api_url)
        
        # Parse the response
        if response.status_code == 200:
            data = response.json()
            # If any of these are True, the dataset exists in some form
            if data.get("viewer", False) or data.get("preview", False):
                return {"exists": True, "message": "Dataset is valid and accessible"}
            else:
                return {"exists": False, "message": "Dataset exists but may not be fully processed yet"}
        else:
            return {"exists": False, "message": f"API returned status code {response.status_code}"}
    except Exception as e:
        return {"exists": False, "message": f"Error verifying dataset: {str(e)}"}

@tool
def Check_Dataset_Validity(dataset_name: str) -> str:
    """A tool that checks if a dataset exists and is valid on Hugging Face.
    
    Args:
        dataset_name: Name of the dataset to check (with or without organization prefix)
    
    Returns:
        Status message about the dataset validity
    """
    try:
        # Ensure the dataset name has the organization prefix
        if "/" not in dataset_name:
            dataset_name = f"Misfits-and-Machines/{dataset_name.replace(' ', '_').lower()}"
        
        # Check dataset validity
        result = verify_dataset_exists(dataset_name)
        
        if result["exists"]:
            return f"Dataset '{dataset_name}' exists and is valid. You can access it at https://huggingface.co/datasets/{dataset_name}"
        else:
            return f"Dataset '{dataset_name}' could not be verified: {result['message']}. It may still be processing or may not exist."
    except Exception as e:
        return f"Error checking dataset validity: {str(e)}"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# Create Perplexity R1 model implementation directly without referencing an undefined variable

# Import necessary modules (already imported above)
# from huggingface_hub import InferenceClient

# Create a new model implementation that uses the larger context window model through InferenceClient
class PerplexityR1Model:
    def __init__(self, temperature=0.5, max_tokens=1500):
        """Initialize Perplexity R1-1776 model with 128K context window."""
        self.temperature = temperature
        self.max_tokens = max_tokens
        self.model_name = "perplexity-ai/r1-1776"
        self.provider = "fireworks-ai"
        self.last_input_token_count = 0
        self.last_output_token_count = 0  # Added attribute for output tokens
        # Get the API key
        self.api_key = os.getenv("HF_API_KEY") or os.getenv("HUGGINGFACE_API_KEY")
        if not self.api_key:
            raise ValueError("No Hugging Face API key found in environment variables")
        # Create the inference client
        self.client = InferenceClient(provider=self.provider, api_key=self.api_key)
        print("Initialized Perplexity R1-1776 model with 128K context window")
    
    def __call__(self, prompt):
        """Call the model with the prompt."""
        # Determine message format and count tokens
        if isinstance(prompt, list):
            # Convert each message's content to a string to avoid nested lists
            combined_prompt = " ".join(str(msg.get("content", "")) for msg in prompt)
            self.last_input_token_count = len(combined_prompt.split())
            messages = prompt  # Already in message format
        elif isinstance(prompt, str):
            self.last_input_token_count = len(prompt.split())
            messages = [{"role": "user", "content": prompt}]
        else:
            prompt_str = str(prompt)
            self.last_input_token_count = len(prompt_str.split())
            messages = [{"role": "user", "content": prompt_str}]
            
        print(f"Sending approximately {self.last_input_token_count} tokens to Perplexity R1-1776")
        
        try:
            completion = self.client.chat.completions.create(
                model=self.model_name,
                messages=messages,
                temperature=self.temperature,
                max_tokens=self.max_tokens
            )
            output = completion.choices[0].message.content
            self.last_output_token_count = len(output.split())
            return output
        except Exception as e:
            print(f"Error calling Perplexity R1-1776: {str(e)}")
            # For context length errors, try simple truncation
            if "context length" in str(e).lower() or "token limit" in str(e).lower():
                print("Context length error with R1-1776 - truncating prompt and retrying")
                if isinstance(prompt, str):
                    truncated_prompt = prompt[-80000:] if len(prompt) > 80000 else prompt
                    messages = [{"role": "user", "content": truncated_prompt}]
                else:
                    combined_prompt = " ".join(str(msg.get("content", "")) for msg in prompt)
                    truncated_prompt = combined_prompt[-80000:] if len(combined_prompt) > 80000 else combined_prompt
                    messages = [{"role": "user", "content": truncated_prompt}]
                    
                try:
                    completion = self.client.chat.completions.create(
                        model=self.model_name,
                        messages=messages,
                        temperature=self.temperature,
                        max_tokens=self.max_tokens
                    )
                    output = completion.choices[0].message.content
                    self.last_output_token_count = len(output.split())
                    return output
                except Exception as retry_error:
                    print(f"Error on retry: {str(retry_error)}")
                    return f"ERROR: Model call failed even with reduced context. Please try a shorter query."
            else:
                return f"ERROR: {str(e)}"

# Initialize our model with Perplexity R1-1776
model = PerplexityR1Model(temperature=0.5, max_tokens=1500)

# Import tool from Hub - do this before using the tool in the agent
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

# Load prompt templates before using them in the agent
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# Initialize the agent with all required components already defined
agent = CodeAgent(
    model=model,
    tools=[
        final_answer,
        Sonar_Web_Search_Tool,
        primary_search_tool,
        get_current_time_in_timezone,
        image_generation_tool,
        Dataset_Creator_Tool,
        Check_Dataset_Validity,
        visit_webpage_tool,
    ],
    max_steps=12,
    verbosity_level=1,
    grammar=None,
    planning_interval=2,
    name="Research Assistant",
    description="""An AI assistant that can search the web, create datasets, and answer questions.
                Using Perplexity R1-1776 model with 128K token context window.""",
    prompt_templates=prompt_templates
)

# Add informative message about the model
print("Using Perplexity R1-1776 model with 128K token context window")

# Add informative message about which search tool is being used
print(f"Agent initialized with {search_tool_name} as primary search tool")
print(f"Available tools: final_answer, Sonar_Web_Search_Tool, {search_tool_name}, get_current_time_in_timezone, image_generation_tool, Dataset_Creator_Tool, Check_Dataset_Validity, visit_webpage_tool")

# Note about working within token limits - add this comment
# When using with queries that might exceed token limits, consider:
# 1. Breaking tasks into smaller sub-tasks
# 2. Limiting the amount of data returned by search tools
# 3. Using the planning_interval to enable more effective reasoning

# To fix the TypeError in Gradio_UI.py, you would need to modify that file
# For now, we'll just use the agent directly
try:
    GradioUI(agent).launch()
except TypeError as e:
    if "unsupported operand type(s) for +=" in str(e):
        print("Error: Token counting issue in Gradio UI")
        print("To fix, edit Gradio_UI.py and change:")
        print("total_input_tokens += agent.model.last_input_token_count")
        print("To:")
        print("total_input_tokens += (agent.model.last_input_token_count or 0)")
    else:
        raise e