Spaces:
Runtime error
Runtime error
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool, VisitWebpageTool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
import os | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
from openai import OpenAI | |
from tools.final_answer import FinalAnswerTool | |
from huggingface_hub import InferenceClient | |
from Gradio_UI import GradioUI | |
# Define the Perplexity system prompt | |
Perplex_Assistant_Prompt = """You are a helpful AI assistant that searches the web for accurate information.""" | |
# Set up API key in environment variable as expected by HfApiModel | |
os.environ["HUGGINGFACE_API_TOKEN"] = os.getenv("HUGGINGFACE_API_KEY", "") | |
# Initialize search tools with fallback capability | |
try: | |
# Try DuckDuckGo first (default) | |
print("Initializing DuckDuckGo search tool...") | |
ddg_search_tool = DuckDuckGoSearchTool(max_results=10) | |
# Test the tool with a simple query | |
test_result = ddg_search_tool("test query") | |
print("DuckDuckGo search tool initialized successfully.") | |
# Use DuckDuckGo as the primary search tool | |
primary_search_tool = ddg_search_tool | |
search_tool_name = "DuckDuckGo" | |
except Exception as e: | |
print(f"Error initializing DuckDuckGo search tool: {str(e)}") | |
print("Falling back to Google search tool...") | |
try: | |
# Import GoogleSearchTool only if needed | |
from smolagents import GoogleSearchTool | |
google_search_tool = GoogleSearchTool() | |
# Test the Google search tool | |
test_result = google_search_tool("test query") | |
print("Google search tool initialized successfully.") | |
# Use Google as the fallback search tool | |
primary_search_tool = google_search_tool | |
search_tool_name = "Google" | |
except Exception as google_error: | |
print(f"Error initializing Google search tool: {str(google_error)}") | |
print("WARNING: No working search tool available. Agent functionality will be limited.") | |
# Create a minimal replacement that returns an explanatory message | |
def search_fallback(query): | |
return f"Search functionality unavailable. Both DuckDuckGo and Google search tools failed to initialize. Query was: {query}" | |
primary_search_tool = search_fallback | |
search_tool_name = "Unavailable" | |
# Initialize the VisitWebpageTool | |
visit_webpage_tool = VisitWebpageTool() | |
#@weave.op() | |
def tracked_perplexity_call(prompt: str, system_messages: str, model_name: str = "sonar-pro", assistant_meta: bool = False): | |
"""Enhanced Perplexity API call with explicit model tracking.""" | |
client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai") | |
system_message = Perplex_Assistant_Prompt | |
if assistant_meta: | |
system_message += f"\n\n{system_messages}" | |
# Minimal parameters for Perplexity | |
return client.chat.completions.create( | |
model=model_name, | |
messages=[ | |
{"role": "system", "content": system_message}, | |
{"role": "user", "content": prompt}, | |
], | |
stream=False, | |
).choices[0].message.content | |
def Sonar_Web_Search_Tool(arg1: str, arg2: str) -> str: | |
"""A tool that accesses Perplexity Sonar to search the web when the answer requires or would benefit from a real world web reference. | |
Args: | |
arg1: User Prompt | |
arg2: Details on the desired web search results as system message for sonar web search | |
""" | |
try: | |
sonar_response = tracked_perplexity_call(arg1, arg2) | |
return sonar_response | |
except Exception as e: | |
return f"Error using Sonar Websearch tool '{arg1} {arg2}': {str(e)}" | |
def parse_json(text: str): | |
""" | |
A safer JSON parser using ast.literal_eval. | |
Converts JSON-like strings to Python objects without executing code. | |
Handles common JSON literals (true, false, null) by converting them to Python equivalents. | |
""" | |
# Replace JSON literals with Python equivalents | |
prepared_text = text.replace("true", "True").replace("false", "False").replace("null", "None") | |
try: | |
import ast | |
return ast.literal_eval(prepared_text) | |
except (SyntaxError, ValueError) as e: | |
raise ValueError(f"Failed to parse JSON: {str(e)}") | |
def Dataset_Creator_Function(dataset_name: str, conversation_data: str) -> str: | |
"""Creates and pushes a dataset to Hugging Face with the conversation history. | |
Args: | |
dataset_name: Name for the dataset (will be prefixed with username) | |
conversation_data: String representing the conversation data. Can be: | |
- JSON array of objects (each object becomes a row) | |
- Pipe-separated values (first row as headers, subsequent rows as values) | |
- Plain text (stored in a single 'text' column) | |
Returns: | |
URL of the created dataset or error message along with the log output. | |
""" | |
log_text = "" | |
try: | |
# Required imports | |
import pandas as pd | |
from datasets import Dataset, DatasetDict | |
from huggingface_hub import HfApi | |
# Get API key | |
api_key = os.getenv("HF_API_KEY") or os.getenv("HUGGINGFACE_API_KEY") | |
if not api_key: | |
return "Error: No Hugging Face API key found in environment variables" | |
# Set fixed username | |
username = "Misfits-and-Machines" | |
safe_dataset_name = dataset_name.replace(" ", "_").lower() | |
repo_id = f"{username}/{safe_dataset_name}" | |
log_text += f"Creating dataset: {repo_id}\n" | |
# Ensure repository exists | |
hf_api = HfApi(token=api_key) | |
try: | |
if not hf_api.repo_exists(repo_id=repo_id, repo_type="dataset"): | |
hf_api.create_repo(repo_id=repo_id, repo_type="dataset") | |
log_text += f"Created repository: {repo_id}\n" | |
else: | |
log_text += f"Repository already exists: {repo_id}\n" | |
except Exception as e: | |
log_text += f"Note when checking/creating repository: {str(e)}\n" | |
# Process input data | |
created_ds = None | |
try: | |
# Try parsing as JSON using the safer parse_json function | |
try: | |
json_data = parse_json(conversation_data) | |
# Process based on data structure | |
if isinstance(json_data, list) and all(isinstance(item, dict) for item in json_data): | |
log_text += f"Processing JSON array with {len(json_data)} items\n" | |
# Create a dataset with columns for all keys in the first item | |
# This ensures the dataset structure is consistent | |
first_item = json_data[0] | |
columns = list(first_item.keys()) | |
log_text += f"Detected columns: {columns}\n" | |
# Initialize data dictionary with empty lists for each column | |
data_dict = {col: [] for col in columns} | |
# Process each item | |
for item in json_data: | |
for col in columns: | |
# Get the value for this column, or empty string if missing | |
value = item.get(col, "") | |
data_dict[col].append(value) | |
# Debug output to verify data structure | |
for col in columns: | |
log_text += f"Column '{col}' has {len(data_dict[col])} entries\n" | |
# Create dataset from dictionary | |
ds = Dataset.from_dict(data_dict) | |
log_text += f"Created dataset with {len(ds)} rows\n" | |
created_ds = DatasetDict({"train": ds}) | |
elif isinstance(json_data, dict): | |
log_text += "Processing single JSON object\n" | |
# For a single object, create a dataset with one row | |
data_dict = {k: [v] for k, v in json_data.items()} | |
ds = Dataset.from_dict(data_dict) | |
created_ds = DatasetDict({"train": ds}) | |
else: | |
raise ValueError("JSON not recognized as array or single object") | |
except Exception as json_error: | |
log_text += f"Not processing as JSON: {str(json_error)}\n" | |
raise json_error # Propagate to next handler | |
except Exception: | |
# Try pipe-separated format | |
lines = conversation_data.strip().split('\n') | |
if '|' in conversation_data and len(lines) > 1: | |
log_text += "Processing as pipe-separated data\n" | |
headers = [h.strip() for h in lines[0].split('|')] | |
log_text += f"Detected headers: {headers}\n" | |
# Initialize data dictionary | |
data_dict = {header: [] for header in headers} | |
# Process each data row | |
for i, line in enumerate(lines[1:], 1): | |
if not line.strip(): | |
continue | |
values = [val.strip() for val in line.split('|')] | |
if len(values) == len(headers): | |
for j, header in enumerate(headers): | |
data_dict[header].append(values[j]) | |
else: | |
log_text += f"Warning: Skipping row {i} (column count mismatch)\n" | |
# Create dataset from dictionary | |
if all(len(values) > 0 for values in data_dict.values()): | |
ds = Dataset.from_dict(data_dict) | |
log_text += f"Created dataset with {len(ds)} rows\n" | |
created_ds = DatasetDict({"train": ds}) | |
else: | |
log_text += "No valid rows found in pipe-separated data\n" | |
created_ds = DatasetDict({"train": Dataset.from_dict({"text": [conversation_data]})}) | |
else: | |
# Fallback for plain text | |
log_text += "Processing as plain text\n" | |
created_ds = DatasetDict({"train": Dataset.from_dict({"text": [conversation_data]})}) | |
# Push using the DatasetDict push_to_hub method. | |
log_text += f"Pushing dataset to {repo_id}\n" | |
created_ds.push_to_hub( | |
repo_id=repo_id, | |
token=api_key, | |
commit_message=f"Upload dataset: {dataset_name}" | |
) | |
dataset_url = f"https://huggingface.co/datasets/{repo_id}" | |
log_text += f"Dataset successfully pushed to: {dataset_url}\n" | |
return f"Successfully created dataset at {dataset_url}\nLogs:\n{log_text}" | |
except Exception as e: | |
import traceback | |
error_trace = traceback.format_exc() | |
log_text += f"Dataset creation error: {str(e)}\n{error_trace}\n" | |
return f"Error creating dataset: {str(e)}\nLogs:\n{log_text}" | |
def Dataset_Creator_Tool(dataset_name: str, conversation_data: str) -> str: | |
"""A tool that creates and pushes a dataset to Hugging Face. | |
Args: | |
dataset_name: Name for the dataset (will be prefixed with 'Misfits-and-Machines/') | |
conversation_data: Data content to save in the dataset. Formats supported: | |
1. JSON array of objects – Each object becomes a row (keys as columns). | |
Example: [{"name": "Product A", "brand": "Company X"}, {"name": "Product B", "brand": "Company Y"}] | |
2. Pipe-separated values – First row as headers, remaining rows as values. | |
Example: "name | brand\nProduct A | Company X\nProduct B | Company Y" | |
3. Plain text – Stored in a single 'text' column. | |
Returns: | |
A link to the created dataset on the Hugging Face Hub or an error message, along with log details. | |
""" | |
try: | |
log_text = f"Creating dataset '{dataset_name}' with {len(conversation_data)} characters of data\n" | |
log_text += f"Dataset will be created at Misfits-and-Machines/{dataset_name.replace(' ', '_').lower()}\n" | |
# Call Dataset_Creator_Function directly without trying to define any new functions | |
result = Dataset_Creator_Function(dataset_name, conversation_data) | |
log_text += f"Dataset creation result: {result}\n" | |
return log_text | |
except Exception as e: | |
import traceback | |
error_trace = traceback.format_exc() | |
return f"Error using Dataset Creator tool: {str(e)}\n{error_trace}" | |
def verify_dataset_exists(repo_id: str) -> dict: | |
"""Verify that a dataset exists and is valid on the Hugging Face Hub. | |
Args: | |
repo_id: Full repository ID in format "username/dataset_name" | |
Returns: | |
Dict with "exists" boolean and "message" string | |
""" | |
try: | |
# Check if dataset exists using the datasets-server API | |
api_url = f"https://datasets-server.huggingface.co/is-valid?dataset={repo_id}" | |
response = requests.get(api_url) | |
# Parse the response | |
if response.status_code == 200: | |
data = response.json() | |
# If any of these are True, the dataset exists in some form | |
if data.get("viewer", False) or data.get("preview", False): | |
return {"exists": True, "message": "Dataset is valid and accessible"} | |
else: | |
return {"exists": False, "message": "Dataset exists but may not be fully processed yet"} | |
else: | |
return {"exists": False, "message": f"API returned status code {response.status_code}"} | |
except Exception as e: | |
return {"exists": False, "message": f"Error verifying dataset: {str(e)}"} | |
def Check_Dataset_Validity(dataset_name: str) -> str: | |
"""A tool that checks if a dataset exists and is valid on Hugging Face. | |
Args: | |
dataset_name: Name of the dataset to check (with or without organization prefix) | |
Returns: | |
Status message about the dataset validity | |
""" | |
try: | |
# Ensure the dataset name has the organization prefix | |
if "/" not in dataset_name: | |
dataset_name = f"Misfits-and-Machines/{dataset_name.replace(' ', '_').lower()}" | |
# Check dataset validity | |
result = verify_dataset_exists(dataset_name) | |
if result["exists"]: | |
return f"Dataset '{dataset_name}' exists and is valid. You can access it at https://huggingface.co/datasets/{dataset_name}" | |
else: | |
return f"Dataset '{dataset_name}' could not be verified: {result['message']}. It may still be processing or may not exist." | |
except Exception as e: | |
return f"Error checking dataset validity: {str(e)}" | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
# Keep the original endpoint as a backup | |
backup_model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', | |
) | |
def model_with_fallback(prompt, **kwargs): | |
"""Simple model function with fallback to the original endpoint.""" | |
try: | |
print("Using primary model: DeepSeek-R1-Distill-Qwen-32B") | |
# Get API key | |
api_key = os.getenv("HF_API_KEY") or os.getenv("HUGGINGFACE_API_KEY") | |
if not api_key: | |
raise ValueError("No Hugging Face API key found") | |
# Format prompt for the API | |
if isinstance(prompt, (dict, list)): | |
import json | |
prompt_text = json.dumps(prompt) | |
else: | |
prompt_text = str(prompt) | |
# Create client and call model | |
client = InferenceClient( | |
provider="hf-inference", | |
api_key=api_key | |
) | |
# Extract parameters | |
temperature = kwargs.get('temperature', 0.5) | |
max_tokens = kwargs.get('max_tokens', 2096) | |
stop_sequences = kwargs.get('stop_sequences', None) | |
# Call the API | |
messages = [{"role": "user", "content": prompt_text}] | |
completion = client.chat.completions.create( | |
model="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
stop=stop_sequences | |
) | |
print("Primary model successful") | |
return completion.choices[0].message.content | |
except Exception as e: | |
print(f"Primary model failed: {str(e)}") | |
print("Falling back to backup model") | |
# Use the backup model | |
return backup_model(prompt, **kwargs) | |
# Set up the model for the agent | |
model = backup_model # Set to backup model directly for now to ensure it works | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
# Initialize the agent using standard smolagents patterns | |
agent = CodeAgent( | |
model=model, | |
tools=[ | |
final_answer, | |
Sonar_Web_Search_Tool, | |
primary_search_tool, # This is already set to either DuckDuckGo, Google, or fallback | |
get_current_time_in_timezone, | |
image_generation_tool, | |
Dataset_Creator_Tool, | |
Check_Dataset_Validity, | |
visit_webpage_tool, # This is correctly initialized as VisitWebpageTool() | |
], | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=3, | |
name="Research Assistant", | |
description="""An AI assistant that can search the web, create datasets, and answer questions # Note about working within token limits | |
# When using with queries that might exceed token limits, consider: | |
# 1. Breaking tasks into smaller sub-tasks | |
# 2. Limiting the amount of data returned by search tools | |
# 3. Using the planning_interval to enable more effective reasoning""", | |
prompt_templates=prompt_templates | |
) | |
# Add informative message about which search tool is being used | |
print(f"Agent initialized with {search_tool_name} as primary search tool") | |
print(f"Available tools: final_answer, Sonar_Web_Search_Tool, {search_tool_name}, get_current_time_in_timezone, image_generation_tool, Dataset_Creator_Tool, Check_Dataset_Validity, visit_webpage_tool") | |
print(f"Using DeepSeek-R1-Distill-Qwen-32B as primary model, with HfApiModel as backup") | |
# Note about working within token limits - add this comment | |
# When using with queries that might exceed token limits, consider: | |
# 1. Breaking tasks into smaller sub-tasks | |
# 2. Limiting the amount of data returned by search tools | |
# 3. Using the planning_interval to enable more effective reasoning | |
# To fix the TypeError in Gradio_UI.py, you would need to modify that file | |
# For now, we'll just use the agent directly | |
try: | |
GradioUI(agent).launch() | |
except TypeError as e: | |
if "unsupported operand type(s) for +=" in str(e): | |
print("Error: Token counting issue in Gradio UI") | |
print("To fix, edit Gradio_UI.py and change:") | |
print("total_input_tokens += agent.model.last_input_token_count") | |
print("To:") | |
print("total_input_tokens += (agent.model.last_input_token_count or 0)") | |
else: | |
raise e |