Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2,preprocess_input, decode_predictions | |
model = MobileNetV2(weights='imagenet') | |
def preprocess_image(image): | |
img = image.resize((224,224)) | |
img_array = np.array(img) | |
img_array = np.expand_dims(img_array, axis=0) | |
img_array = preprocess_input(img_array) | |
return img_array | |
def predict(image): | |
img_array = preprocess_image(image) | |
preds = model.predict(img_array) | |
decoded_preds = decode_predictions(preds, top=1)[0] | |
return decoded_preds | |
def main(): | |
st.set_page_config(page_title='Image Classification', page_icon=":camera_flash:") | |
st.title('Image Classification with MobileNetV2') | |
st.sidebar.title("Options") | |
st.sidebar.write('Upload an image for classification') | |
uploaded_file = st.sidebar.file_uploader("", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
if st.button('Classify'): | |
with st.spinner('Classifying...'): | |
prediction = predict(image) | |
st.success('Classification done!') | |
st.write('**Prediction:**') | |
imagenet_id, label, score = prediction[0] | |
st.write(f"- **{label}** (Confidence: {score:2%})") | |
if __name__ == '__main__': | |
main() |