Somnath3570's picture
Create app.py
d06c651 verified
import streamlit as st
from PIL import Image
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2,preprocess_input, decode_predictions
model = MobileNetV2(weights='imagenet')
def preprocess_image(image):
img = image.resize((224,224))
img_array = np.array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)
return img_array
def predict(image):
img_array = preprocess_image(image)
preds = model.predict(img_array)
decoded_preds = decode_predictions(preds, top=1)[0]
return decoded_preds
def main():
st.set_page_config(page_title='Image Classification', page_icon=":camera_flash:")
st.title('Image Classification with MobileNetV2')
st.sidebar.title("Options")
st.sidebar.write('Upload an image for classification')
uploaded_file = st.sidebar.file_uploader("", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
if st.button('Classify'):
with st.spinner('Classifying...'):
prediction = predict(image)
st.success('Classification done!')
st.write('**Prediction:**')
imagenet_id, label, score = prediction[0]
st.write(f"- **{label}** (Confidence: {score:2%})")
if __name__ == '__main__':
main()