Spaces:
Running
Running
File size: 54,966 Bytes
0be7e4d b2c3381 0be7e4d b2c3381 0be7e4d e0ca7be 0be7e4d b2c3381 0be7e4d b2c3381 0be7e4d e0ca7be 0be7e4d 376535d 0be7e4d e0ca7be 0be7e4d e0ca7be 0be7e4d e0ca7be 0be7e4d e0ca7be 0be7e4d 376535d e0ca7be 0be7e4d 376535d 0be7e4d 376535d 0be7e4d 376535d 0be7e4d 376535d e0ca7be 376535d 0be7e4d 376535d 0be7e4d e0ca7be 376535d 0be7e4d 376535d 0be7e4d 376535d 0be7e4d b2c3381 0be7e4d 5172131 0be7e4d 5172131 0be7e4d 5172131 0be7e4d b2c3381 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 5172131 157b77e 5172131 157b77e 5172131 157b77e 5172131 157b77e 5172131 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d 157b77e 0be7e4d b2c3381 0be7e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 |
import numpy as np
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend for cloud deployment
import matplotlib.pyplot as plt
from typing import List, Dict, Tuple
import math
# Configure matplotlib for cloud deployment
plt.ioff() # Turn off interactive mode
plt.rcParams['figure.dpi'] = 80 # Lower DPI for faster rendering
plt.rcParams['savefig.dpi'] = 80
class ContinuousBeam:
"""
Continuous beam analysis and RC design according to ACI code
"""
def __init__(self):
self.spans = []
self.loads = []
self.supports = []
self.moments = []
self.shears = []
self.fc = 280 # Concrete compressive strength (ksc) - converted from 28 MPa
self.fy = 4000 # Steel yield strength (ksc) - Thai standard
self.beam_width = 300 # mm
self.beam_depth = 500 # mm
self.cover = 40 # mm
self.d = self.beam_depth - self.cover # Effective depth
def add_span(self, length: float, distributed_load: float = 0, point_loads: List[Tuple[float, float]] = None):
"""
Add a span to the continuous beam
length: span length in meters
distributed_load: uniformly distributed load in kN/m
point_loads: list of (position, load) tuples in (m, kN)
"""
span = {
'length': length,
'distributed_load': distributed_load,
'point_loads': point_loads or []
}
self.spans.append(span)
def create_beam_element_stiffness(self, length, E, I):
"""
Create local stiffness matrix for a beam element
[k] = EI/L^3 * [[12, 6L, -12, 6L],
[6L, 4L^2, -6L, 2L^2],
[-12, -6L, 12, -6L],
[6L, 2L^2, -6L, 4L^2]]
DOFs: [v1, θ1, v2, θ2] where v=deflection, θ=rotation
"""
L = length
EI_L3 = E * I / (L**3)
k = EI_L3 * np.array([
[12, 6*L, -12, 6*L],
[6*L, 4*L**2, -6*L, 2*L**2],
[-12, -6*L, 12, -6*L],
[6*L, 2*L**2, -6*L, 4*L**2]
])
return k
def create_distributed_load_vector(self, length, w):
"""
Create equivalent nodal force vector for distributed load
For uniformly distributed load w:
[F] = wL/12 * [6, L, 6, -L]
"""
L = length
wL_12 = w * L / 12
f = wL_12 * np.array([6, L, 6, -L])
return f
def create_point_load_vector(self, length, point_loads):
"""
Create equivalent nodal force vector for point loads
"""
L = length
f = np.zeros(4)
for pos, load in point_loads:
a = pos # distance from left node
b = L - pos # distance from right node
# Shape functions at load position
xi = pos / L # normalized position
# Equivalent nodal forces using shape functions
N1 = 1 - 3*xi**2 + 2*xi**3
N2 = L * (xi - 2*xi**2 + xi**3)
N3 = 3*xi**2 - 2*xi**3
N4 = L * (-xi**2 + xi**3)
f += load * np.array([N1, N2, N3, N4])
return f
def finite_element_analysis(self):
"""
Perform finite element analysis of continuous beam
"""
if len(self.spans) == 0:
raise ValueError("No spans defined")
# Material properties (assumed values for analysis)
E = 30000 # MPa (typical for concrete)
# Calculate moment of inertia from beam dimensions
b = self.beam_width / 1000 # Convert mm to m
h = self.beam_depth / 1000 # Convert mm to m
I = b * h**3 / 12 # m^4
# Create mesh - optimize for cloud deployment
# Reduce elements per span for better performance on limited resources
max_elements_per_span = min(8, max(4, int(40 / len(self.spans)))) # Scale down for many spans
elements_per_span = max_elements_per_span
total_elements = len(self.spans) * elements_per_span
total_nodes = total_elements + 1
# Node coordinates
node_coords = []
current_x = 0
for span in self.spans:
span_length = span['length']
element_length = span_length / elements_per_span
for i in range(elements_per_span):
node_coords.append(current_x + i * element_length)
current_x += span_length
# Add final node
node_coords.append(current_x)
node_coords = np.array(node_coords)
# Global stiffness matrix (2 DOFs per node: deflection and rotation)
n_dofs = 2 * total_nodes
K_global = np.zeros((n_dofs, n_dofs))
F_global = np.zeros(n_dofs)
# Assembly process
for elem_idx in range(total_elements):
# Element properties
span_idx = elem_idx // elements_per_span
local_elem_idx = elem_idx % elements_per_span
span = self.spans[span_idx]
element_length = span['length'] / elements_per_span
# Local stiffness matrix
k_local = self.create_beam_element_stiffness(element_length, E, I)
# Global DOF indices for this element
node1 = elem_idx
node2 = elem_idx + 1
dofs = [2*node1, 2*node1+1, 2*node2, 2*node2+1] # [v1, θ1, v2, θ2]
# Assemble into global matrix
for i in range(4):
for j in range(4):
K_global[dofs[i], dofs[j]] += k_local[i, j]
# Create load vector for this element
# Distributed load
w = span['distributed_load'] * 1000 # Convert kN/m to N/m
f_dist = self.create_distributed_load_vector(element_length, w)
# Point loads (only if they fall within this element)
point_loads = span.get('point_loads', [])
f_point = np.zeros(4)
span_start = sum(self.spans[j]['length'] for j in range(span_idx))
elem_start = span_start + local_elem_idx * element_length
elem_end = elem_start + element_length
for pos, load in point_loads:
global_pos = span_start + pos
if elem_start <= global_pos <= elem_end:
local_pos = global_pos - elem_start
f_point += self.create_point_load_vector(element_length, [(local_pos, load * 1000)])
f_total = f_dist + f_point
# Assemble into global force vector
for i in range(4):
F_global[dofs[i]] += f_total[i]
# Apply boundary conditions (pin supports at all support locations)
# Support locations are at the ends of each span
support_nodes = [0] # First support
current_node = 0
for span in self.spans:
current_node += elements_per_span
support_nodes.append(current_node)
# Create arrays for free DOFs (removing constrained deflections)
constrained_dofs = [2 * node for node in support_nodes] # Vertical deflections at supports
free_dofs = [i for i in range(n_dofs) if i not in constrained_dofs]
# Extract free DOF matrices
K_free = K_global[np.ix_(free_dofs, free_dofs)]
F_free = F_global[free_dofs]
# Solve for displacements
try:
U_free = np.linalg.solve(K_free, F_free)
except np.linalg.LinAlgError:
# Fallback to least squares if matrix is singular
U_free = np.linalg.lstsq(K_free, F_free, rcond=None)[0]
# Reconstruct full displacement vector
U_global = np.zeros(n_dofs)
U_global[free_dofs] = U_free
# Store results for post-processing
self.node_coords = node_coords
self.displacements = U_global
self.elements_per_span = elements_per_span
self.element_properties = {'E': E, 'I': I}
self.K_global = K_global # Store for reaction calculation
return node_coords, U_global
def calculate_element_forces(self):
"""
Calculate internal forces (moment and shear) for each element
"""
if not hasattr(self, 'displacements'):
self.finite_element_analysis()
E = self.element_properties['E']
I = self.element_properties['I']
moments = []
shears = []
x_coords = []
# Calculate reactions first for proper shear calculation
reactions = self.calculate_reactions()
elem_idx = 0
for span_idx, span in enumerate(self.spans):
span_length = span['length']
element_length = span_length / self.elements_per_span
span_start_x = sum(self.spans[j]['length'] for j in range(span_idx))
for local_elem in range(self.elements_per_span):
# Element nodes
node1 = elem_idx
node2 = elem_idx + 1
# Element displacements
u1 = self.displacements[2*node1] # deflection at node 1
theta1 = self.displacements[2*node1+1] # rotation at node 1
u2 = self.displacements[2*node2] # deflection at node 2
theta2 = self.displacements[2*node2+1] # rotation at node 2
# Calculate forces at multiple points within element
# Reduce points for cloud deployment performance
n_points = 5 # Reduced from 10 to 5
for i in range(n_points):
xi = i / (n_points - 1) # 0 to 1
x_local = xi * element_length
x_global = span_start_x + local_elem * element_length + x_local
# Shape function derivatives for moment calculation
# M = -EI * d²v/dx²
d2N1_dx2 = (-6 + 12*xi) / element_length**2
d2N2_dx2 = (-4 + 6*xi) / element_length
d2N3_dx2 = (6 - 12*xi) / element_length**2
d2N4_dx2 = (-2 + 6*xi) / element_length
curvature = (d2N1_dx2 * u1 + d2N2_dx2 * theta1 +
d2N3_dx2 * u2 + d2N4_dx2 * theta2)
moment = -E * I * curvature / 1000 # Convert to kN-m
# Calculate shear using equilibrium method (more reliable)
shear = self.calculate_shear_at_position(x_global, reactions)
x_coords.append(x_global)
moments.append(moment)
shears.append(shear)
elem_idx += 1
return np.array(x_coords), np.array(moments), np.array(shears)
def calculate_reactions(self):
"""
Calculate support reactions from finite element solution
"""
if not hasattr(self, 'K_global') or not hasattr(self, 'displacements'):
self.finite_element_analysis()
# Get support node indices
support_nodes = [0] # First support
current_node = 0
for span in self.spans:
current_node += self.elements_per_span
support_nodes.append(current_node)
# Calculate reactions using R = K*U - F for constrained DOFs
reactions = []
# Build complete force vector including applied loads
n_dofs = len(self.displacements)
F_complete = np.zeros(n_dofs)
# Assemble applied load vector (same as in FE analysis)
elem_idx = 0
for span_idx, span in enumerate(self.spans):
element_length = span['length'] / self.elements_per_span
for local_elem_idx in range(self.elements_per_span):
# Global DOF indices for this element
node1 = elem_idx
node2 = elem_idx + 1
dofs = [2*node1, 2*node1+1, 2*node2, 2*node2+1]
# Create load vector for this element
w = span['distributed_load'] * 1000 # Convert to N/m
f_dist = self.create_distributed_load_vector(element_length, w)
# Point loads (only if they fall within this element)
point_loads = span.get('point_loads', [])
f_point = np.zeros(4)
span_start = sum(self.spans[j]['length'] for j in range(span_idx))
elem_start = span_start + local_elem_idx * element_length
elem_end = elem_start + element_length
for pos, load in point_loads:
global_pos = span_start + pos
if elem_start <= global_pos <= elem_end:
local_pos = global_pos - elem_start
f_point += self.create_point_load_vector(element_length, [(local_pos, load * 1000)])
f_total = f_dist + f_point
# Assemble into global force vector
for i in range(4):
F_complete[dofs[i]] += f_total[i]
elem_idx += 1
# Calculate reactions at each support
for support_node in support_nodes:
# Vertical DOF for this support
dof = 2 * support_node
# Reaction = K*U - F at constrained DOF
# Since displacement is zero at support, reaction = -F_applied + K*U_other
reaction_force = 0
# Sum contributions from all DOFs
for j in range(n_dofs):
reaction_force += self.K_global[dof, j] * self.displacements[j]
# Subtract applied force (if any) at this DOF
reaction_force -= F_complete[dof]
# Convert to kN and store (positive = upward reaction)
# Note: FE convention may give negative values for upward reactions
reactions.append(-reaction_force / 1000)
# Store for debugging
self.reactions = reactions
return reactions
def calculate_shear_at_position(self, x_global, reactions):
"""
Calculate shear force at any position using equilibrium
"""
shear = 0
current_pos = 0
# Add reaction at first support
if len(reactions) > 0:
shear += reactions[0]
# Subtract loads to the left of current position
support_idx = 1
for span_idx, span in enumerate(self.spans):
span_start = current_pos
span_end = current_pos + span['length']
if x_global <= span_start:
break
# Check if we passed a support
if x_global > span_end and support_idx < len(reactions):
shear += reactions[support_idx]
support_idx += 1
# Calculate how much of this span is to the left of current position
span_length_to_left = min(x_global - span_start, span['length'])
if span_length_to_left > 0:
# Distributed load effect
w = span['distributed_load']
shear -= w * span_length_to_left
# Point load effects
point_loads = span.get('point_loads', [])
for pos, load in point_loads:
if pos <= span_length_to_left:
shear -= load
current_pos += span['length']
return shear
def analyze_moments(self):
"""
Analyze continuous beam using finite element method
"""
num_spans = len(self.spans)
if num_spans == 0:
raise ValueError("No spans defined")
# Perform finite element analysis
self.finite_element_analysis()
# Calculate detailed forces along the beam
x_coords, moments_detailed, shears_detailed = self.calculate_element_forces()
# Extract critical moments and shears for each span (for compatibility with existing code)
self.moments = []
self.shears = []
current_pos = 0
for i, span in enumerate(self.spans):
span_length = span['length']
span_start = current_pos
span_mid = current_pos + span_length / 2
span_end = current_pos + span_length
# Find indices closest to critical points
start_idx = np.argmin(np.abs(x_coords - span_start))
mid_idx = np.argmin(np.abs(x_coords - span_mid))
end_idx = np.argmin(np.abs(x_coords - span_end))
# Extract moments and shears at critical points
M_start = moments_detailed[start_idx]
M_mid = moments_detailed[mid_idx]
M_end = moments_detailed[end_idx]
V_start = shears_detailed[start_idx]
V_mid = shears_detailed[mid_idx]
V_end = shears_detailed[end_idx]
# Store for span (maintaining compatibility with existing design methods)
self.moments.append([M_start, M_mid, M_end])
self.shears.append([V_start, V_mid, V_end])
current_pos += span_length
# Store detailed results for plotting
self.detailed_x = x_coords
self.detailed_moments = moments_detailed
self.detailed_shears = shears_detailed
def calculate_required_reinforcement(self, moment: float, beam_type: str = "rectangular"):
"""
Calculate required area of reinforcement according to ACI code
moment: Design moment in kN-m
beam_type: Type of beam section
"""
if moment == 0:
return 0
# Convert moment to N-mm
Mu = abs(moment) * 1e6
# Material properties - convert from ksc to MPa
fc = self.fc / 10.2 # Convert ksc to MPa (1 ksc ≈ 0.098 MPa)
fy = self.fy / 10.2 # Convert ksc to MPa
b = self.beam_width # mm
d = self.d # mm
# Strength reduction factor
phi = 0.9
# Calculate required reinforcement
# Using simplified rectangular stress block
beta1 = 0.85 if fc <= 28 else max(0.65, 0.85 - 0.05 * (fc - 28) / 7)
# Calculate Rn
Rn = Mu / (phi * b * d**2)
# Calculate reinforcement ratio
# Check for domain error in sqrt
discriminant = 1 - 2 * Rn / (0.85 * fc)
if discriminant < 0:
# Moment exceeds capacity - increase beam size or use compression reinforcement
raise ValueError(f"Moment exceeds beam capacity. Increase beam size or use compression reinforcement.")
rho = (0.85 * fc / fy) * (1 - math.sqrt(discriminant))
# Minimum reinforcement ratio
rho_min = max(1.4 / fy, 0.25 * math.sqrt(fc) / fy)
# Maximum reinforcement ratio (75% of balanced ratio)
rho_b = (0.85 * fc * beta1 * 600) / (fy * (600 + fy))
rho_max = 0.75 * rho_b
# Check limits
rho = max(rho, rho_min)
if rho > rho_max:
raise ValueError(f"Required reinforcement ratio {rho:.4f} exceeds maximum {rho_max:.4f}")
# Calculate required area
As_required = rho * b * d
return As_required
def calculate_shear_reinforcement(self, shear: float):
"""
Calculate shear reinforcement (stirrups) according to ACI code
shear: Design shear force in kN
"""
if shear == 0:
return {"stirrup_spacing": "No stirrups required", "Av": 0}
# Convert shear to N
Vu = abs(shear) * 1000
# Material properties - convert from ksc to MPa
fc = self.fc / 10.2 # Convert ksc to MPa
fy = self.fy / 10.2 # Convert ksc to MPa (for stirrups)
b = self.beam_width # mm
d = self.d # mm
# Strength reduction factor for shear
phi_v = 0.75
# Concrete shear capacity
Vc = 0.17 * math.sqrt(fc) * b * d # N
# Check if shear reinforcement is required
if Vu <= phi_v * Vc / 2:
return {"stirrup_spacing": "No stirrups required", "Av": 0}
# Calculate required shear reinforcement
Vs = Vu / phi_v - Vc # Required steel shear capacity
# Maximum shear that can be carried by steel
Vs_max = 0.66 * math.sqrt(fc) * b * d
if Vs > Vs_max:
raise ValueError("Shear exceeds maximum capacity - increase beam size")
# Calculate required stirrup area
# Use RB9 or RB6 stirrups based on shear demand
if Vs > 150000: # High shear - use RB9
stirrup_dia = 9
Av = 2 * math.pi * (9/2)**2 # 2-leg RB9 stirrups = 2 × 63.6 = 127 mm²
stirrup_designation = "RB9"
else: # Lower shear - use RB6
stirrup_dia = 6
Av = 2 * math.pi * (6/2)**2 # 2-leg RB6 stirrups = 2 × 28.3 = 57 mm²
stirrup_designation = "RB6"
# Calculate required spacing
s_required = Av * fy * d / Vs # mm
# Maximum spacing limits
s_max = min(d / 2, 600) # mm
# Minimum stirrup requirements
if Vu > phi_v * Vc:
Av_min = 0.35 * b * s_required / fy
s_max_min = min(d / 4, 300) # More restrictive for high shear
s_required = min(s_required, s_max_min)
s_required = min(s_required, s_max)
s_required = max(s_required, 50) # Minimum practical spacing
return {
"stirrup_spacing": f"{stirrup_designation} @ {s_required:.0f} mm c/c",
"Av": Av,
"Vs": Vs / 1000, # Convert back to kN
"Vc": Vc / 1000, # Convert back to kN
"stirrup_type": stirrup_designation
}
def design_beam(self):
"""
Complete beam design including flexural and shear design
"""
if not self.moments:
self.analyze_moments()
design_results = []
for i, (moments, shears) in enumerate(zip(self.moments, self.shears)):
span_design = {
'span': i + 1,
'length': self.spans[i]['length'],
'moments': moments,
'shears': shears,
'reinforcement': [],
'stirrups': []
}
# Design for each critical section
moment_locations = ['Left Support', 'Mid-span', 'Right Support']
for j, (moment, shear) in enumerate(zip(moments, shears)):
# Flexural design
if moment != 0:
As_required = self.calculate_required_reinforcement(moment)
# Select reinforcement bars - Thai DB bars with spacing check
bar_data = {
12: {'area': 113, 'diameter': 12}, # DB12
16: {'area': 201, 'diameter': 16}, # DB16
20: {'area': 314, 'diameter': 20}, # DB20
24: {'area': 452, 'diameter': 24}, # DB24
32: {'area': 804, 'diameter': 32} # DB32
}
# Calculate minimum spacing requirements
cover = self.cover
stirrup_dia = 9 # Assume RB9 stirrups
# Try different bar sizes with spacing check
selected = False
for bar_size in sorted(bar_data.keys()):
bar_info = bar_data[bar_size]
bar_area = bar_info['area']
bar_diameter = bar_info['diameter']
num_bars = math.ceil(As_required / bar_area)
# Check practical limits
if num_bars > 8: # Too many bars
continue
if num_bars < 2: # Minimum 2 bars
num_bars = 2
# Calculate required spacing
# Available width = beam_width - 2×cover - 2×stirrup_dia
available_width = self.beam_width - 2*cover - 2*stirrup_dia
# Required spacing = (available_width - num_bars×bar_diameter) / (num_bars-1)
if num_bars > 1:
required_spacing = (available_width - num_bars * bar_diameter) / (num_bars - 1)
else:
required_spacing = available_width # Single bar case
# Minimum spacing = max(25mm, bar_diameter, aggregate_size)
# Use conservative 25mm minimum
min_spacing = max(25, bar_diameter)
# Check if spacing is adequate
if required_spacing >= min_spacing:
As_provided = num_bars * bar_area
selected = True
break
if not selected:
# If no bar size works, use largest bars and warn
bar_size = 32
bar_area = bar_data[32]['area']
bar_diameter = bar_data[32]['diameter']
num_bars = max(2, math.ceil(As_required / bar_area))
As_provided = num_bars * bar_area
# Calculate actual spacing for warning
available_width = self.beam_width - 2*cover - 2*stirrup_dia
if num_bars > 1:
actual_spacing = (available_width - num_bars * bar_diameter) / (num_bars - 1)
else:
actual_spacing = available_width
if actual_spacing < 25:
print(f"Warning: Tight bar spacing ({actual_spacing:.1f}mm) at {moment_locations[j]}. Consider increasing beam width.")
# Calculate final spacing for display
available_width = self.beam_width - 2*cover - 2*stirrup_dia
if num_bars > 1:
final_spacing = (available_width - num_bars * bar_diameter) / (num_bars - 1)
else:
final_spacing = available_width
reinforcement = {
'location': moment_locations[j],
'moment': moment,
'As_required': As_required,
'As_provided': As_provided,
'bars': f"{num_bars}-DB{bar_size}",
'spacing': f"{final_spacing:.0f}mm",
'ratio': As_provided / (self.beam_width * self.d) * 100
}
else:
reinforcement = {
'location': moment_locations[j],
'moment': 0,
'As_required': 0,
'As_provided': 0,
'bars': "No reinforcement",
'spacing': "N/A",
'ratio': 0
}
span_design['reinforcement'].append(reinforcement)
# Shear design
stirrup_design = self.calculate_shear_reinforcement(shear)
stirrup_design['location'] = moment_locations[j]
stirrup_design['shear'] = shear
span_design['stirrups'].append(stirrup_design)
design_results.append(span_design)
return design_results
def generate_report(self, design_results):
"""
Generate design report
"""
report = []
report.append("="*60)
report.append("CONTINUOUS BEAM RC DESIGN REPORT")
report.append("According to ACI Code")
report.append("="*60)
report.append(f"Beam dimensions: {self.beam_width}mm × {self.beam_depth}mm")
report.append(f"Concrete strength (f'c): {self.fc} MPa")
report.append(f"Steel strength (fy): {self.fy} MPa")
report.append(f"Effective depth (d): {self.d} mm")
report.append("")
for span_data in design_results:
report.append(f"SPAN {span_data['span']} - Length: {span_data['length']} m")
report.append("-" * 40)
# Moments and reinforcement
report.append("FLEXURAL DESIGN:")
for reinf in span_data['reinforcement']:
if reinf['moment'] != 0:
report.append(f" {reinf['location']}:")
report.append(f" Moment: {reinf['moment']:.2f} kN-m")
report.append(f" As required: {reinf['As_required']:.0f} mm²")
report.append(f" As provided: {reinf['As_provided']:.0f} mm²")
report.append(f" Reinforcement: {reinf['bars']}")
report.append(f" Bar spacing: {reinf['spacing']}")
report.append(f" Reinforcement ratio: {reinf['ratio']:.2f}%")
report.append("")
# Shear and stirrups
report.append("SHEAR DESIGN:")
for stirrup in span_data['stirrups']:
if stirrup['shear'] != 0:
report.append(f" {stirrup['location']}:")
report.append(f" Shear: {stirrup['shear']:.2f} kN")
if 'Vs' in stirrup:
report.append(f" Vc: {stirrup['Vc']:.2f} kN")
report.append(f" Vs: {stirrup['Vs']:.2f} kN")
report.append(f" Stirrup spacing: {stirrup['stirrup_spacing']}")
report.append("")
report.append("")
return "\n".join(report)
def plot_bmd_sfd(self, design_results=None):
"""
Generate BMD and SFD plots
"""
if design_results is None:
design_results = self.design_beam()
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))
# Calculate total beam length and positions
total_length = 0
span_positions = [0]
for span in self.spans:
total_length += span['length']
span_positions.append(total_length)
# Use detailed FE results if available, otherwise fall back to approximate method
if hasattr(self, 'detailed_x') and hasattr(self, 'detailed_moments'):
# Use finite element results
x_coords = self.detailed_x
moments_detailed = self.detailed_moments
shears_detailed = self.detailed_shears
else:
# Fallback to approximate method for backwards compatibility
x_coords = []
moments_detailed = []
shears_detailed = []
for i, span_data in enumerate(design_results):
span_length = span_data['length']
start_pos = span_positions[i]
# Create x coordinates for this span
x_span = np.linspace(start_pos, start_pos + span_length, 100)
# Get moments and shears for this span
moments = span_data['moments'] # [left, mid, right]
shears = span_data['shears']
# Simple interpolation between critical points
moment_curve = np.interp(x_span,
[start_pos, start_pos + span_length/2, start_pos + span_length],
moments)
shear_curve = np.interp(x_span,
[start_pos, start_pos + span_length/2, start_pos + span_length],
shears)
x_coords.extend(x_span)
moments_detailed.extend(moment_curve)
shears_detailed.extend(shear_curve)
# Plot BMD
ax1.plot(x_coords, moments_detailed, 'b-', linewidth=2, label='Bending Moment')
ax1.fill_between(x_coords, moments_detailed, alpha=0.3, color='blue')
ax1.axhline(y=0, color='k', linestyle='-', alpha=0.3)
ax1.set_ylabel('Bending Moment (kN-m)', fontsize=12)
ax1.set_title('Bending Moment Diagram (BMD)', fontsize=14, fontweight='bold')
ax1.grid(True, alpha=0.3)
ax1.legend()
# Add support symbols
for pos in span_positions:
ax1.axvline(x=pos, color='red', linestyle='--', alpha=0.7)
ax1.plot(pos, 0, 'rs', markersize=8, label='Support' if pos == span_positions[0] else "")
# Plot SFD
ax2.plot(x_coords, shears_detailed, 'r-', linewidth=2, label='Shear Force')
ax2.fill_between(x_coords, shears_detailed, alpha=0.3, color='red')
ax2.axhline(y=0, color='k', linestyle='-', alpha=0.3)
ax2.set_ylabel('Shear Force (kN)', fontsize=12)
ax2.set_xlabel('Distance along beam (m)', fontsize=12)
ax2.set_title('Shear Force Diagram (SFD)', fontsize=14, fontweight='bold')
ax2.grid(True, alpha=0.3)
ax2.legend()
# Add support symbols
for pos in span_positions:
ax2.axvline(x=pos, color='red', linestyle='--', alpha=0.7)
ax2.plot(pos, 0, 'rs', markersize=8, label='Support' if pos == span_positions[0] else "")
plt.tight_layout()
# Close any other open figures to free memory
for i in plt.get_fignums():
if i != fig.number:
plt.close(i)
return fig
def plot_reinforcement_layout(self, design_results=None):
"""
Generate reinforcement layout diagram
"""
if design_results is None:
design_results = self.design_beam()
fig, ax = plt.subplots(1, 1, figsize=(14, 8))
# Calculate positions
total_length = sum(span['length'] for span in self.spans)
span_positions = [0]
current_pos = 0
for span in self.spans:
current_pos += span['length']
span_positions.append(current_pos)
# Draw beam outline
beam_height = 0.5 # Normalized height for drawing
ax.add_patch(plt.Rectangle((0, -beam_height/2), total_length, beam_height,
fill=False, edgecolor='black', linewidth=2))
# Add beam dimensions text
ax.text(total_length/2, beam_height/2 + 0.1,
f'{self.beam_width}mm × {self.beam_depth}mm',
ha='center', va='bottom', fontsize=10, fontweight='bold')
# Draw reinforcement for each span
colors = ['blue', 'green', 'orange', 'purple', 'brown']
for i, span_data in enumerate(design_results):
span_start = span_positions[i]
span_end = span_positions[i + 1]
span_center = (span_start + span_end) / 2
color = colors[i % len(colors)]
# Process reinforcement
for j, reinf in enumerate(span_data['reinforcement']):
if reinf['As_provided'] > 0:
location = reinf['location']
bars = reinf['bars']
if location == 'Left Support':
x_pos = span_start
y_pos = beam_height/3 # Top reinforcement
marker = '^'
label_pos = 'top'
elif location == 'Mid-span':
x_pos = span_center
y_pos = -beam_height/3 # Bottom reinforcement
marker = 'v'
label_pos = 'bottom'
else: # Right Support
x_pos = span_end
y_pos = beam_height/3 # Top reinforcement
marker = '^'
label_pos = 'top'
# Draw reinforcement symbol
ax.scatter(x_pos, y_pos, s=100, c=color, marker=marker,
edgecolor='black', linewidth=1, zorder=5)
# Get spacing information for this reinforcement
spacing_info = ""
if 'spacing' in reinf and reinf['spacing'] != "N/A":
spacing_info = f"\nSpacing: {reinf['spacing']}"
# Add reinforcement label with spacing
label_text = bars + spacing_info
if label_pos == 'top':
ax.text(x_pos, y_pos + 0.15, label_text, ha='center', va='bottom',
fontsize=9, fontweight='bold', rotation=0,
bbox=dict(boxstyle="round,pad=0.2", facecolor="lightblue", alpha=0.8))
else:
ax.text(x_pos, y_pos - 0.15, label_text, ha='center', va='top',
fontsize=9, fontweight='bold', rotation=0,
bbox=dict(boxstyle="round,pad=0.2", facecolor="lightblue", alpha=0.8))
# Draw dimension lines for bar spacing if multiple bars
if 'num_bars' in reinf and reinf['num_bars'] > 1 and 'spacing' in reinf and reinf['spacing'] != "N/A":
bar_count = reinf['num_bars']
# Extract numerical value from spacing string (e.g., "150mm" -> 150)
try:
spacing_mm = float(reinf['spacing'].replace('mm', ''))
spacing = spacing_mm / 1000 # Convert mm to m for plotting
except:
continue # Skip if spacing format is unexpected
# Calculate bar positions along the beam width (shown as small offset from main position)
if location == 'Mid-span': # Bottom bars
# Show individual bar positions
total_bar_width = (bar_count - 1) * spacing / 20 # Scale for visualization
start_offset = -total_bar_width / 2
for bar_idx in range(bar_count):
bar_x = x_pos + start_offset + (bar_idx * total_bar_width / (bar_count - 1) if bar_count > 1 else 0)
ax.scatter(bar_x, y_pos, s=30, c='darkblue', marker='o',
edgecolor='black', linewidth=0.5, zorder=6, alpha=0.7)
# Add spacing dimension line below
if bar_count > 1:
dim_y = y_pos - 0.25
ax.annotate('', xy=(x_pos + start_offset, dim_y),
xytext=(x_pos + start_offset + total_bar_width, dim_y),
arrowprops=dict(arrowstyle='<->', color='red', lw=1))
ax.text(x_pos, dim_y - 0.05, f'{reinf["spacing"]} c/c',
ha='center', va='top', fontsize=7, color='red', fontweight='bold')
# Draw supports
for i, pos in enumerate(span_positions):
# Support triangle
triangle_height = 0.2
triangle_width = 0.1
triangle = plt.Polygon([
[pos - triangle_width/2, -beam_height/2],
[pos + triangle_width/2, -beam_height/2],
[pos, -beam_height/2 - triangle_height]
], fill=True, facecolor='red', edgecolor='black')
ax.add_patch(triangle)
# Support label
ax.text(pos, -beam_height/2 - triangle_height - 0.1,
f'Support {i+1}', ha='center', va='top', fontsize=8)
# Add span labels and loads
for i, span in enumerate(self.spans):
span_start = span_positions[i]
span_end = span_positions[i + 1]
span_center = (span_start + span_end) / 2
# Create span label text
label_text = f'Span {i+1}\nL = {span["length"]}m\nw = {span["distributed_load"]}kN/m'
# Add point loads to label if any
if span.get('point_loads'):
point_load_text = '\nPoint Loads:'
for pos, load in span['point_loads']:
point_load_text += f'\n{load}kN @ {pos}m'
label_text += point_load_text
# Span label
ax.text(span_center, -beam_height/2 - 0.4, label_text,
ha='center', va='top', fontsize=9,
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightyellow", alpha=0.7))
# Distributed load arrows
if span["distributed_load"] > 0:
num_arrows = 5
for j in range(num_arrows):
x_arrow = span_start + (span_end - span_start) * j / (num_arrows - 1)
ax.arrow(x_arrow, beam_height/2 + 0.3, 0, -0.2,
head_width=0.05, head_length=0.05, fc='red', ec='red')
# Point load arrows
if span.get('point_loads'):
for pos, load in span['point_loads']:
x_point = span_start + pos
# Larger arrow for point loads
ax.arrow(x_point, beam_height/2 + 0.5, 0, -0.4,
head_width=0.08, head_length=0.08, fc='blue', ec='blue', linewidth=2)
# Point load label
ax.text(x_point, beam_height/2 + 0.6, f'{load}kN',
ha='center', va='bottom', fontsize=8, fontweight='bold', color='blue')
# Formatting
ax.set_xlim(-0.5, total_length + 0.5)
ax.set_ylim(-1.2, 1.0)
ax.set_xlabel('Distance along beam (m)', fontsize=12)
ax.set_title('Reinforcement Layout', fontsize=14, fontweight='bold')
ax.grid(True, alpha=0.3)
ax.set_aspect('equal')
# Legend
legend_elements = [
plt.scatter([], [], s=100, c='blue', marker='^', edgecolor='black',
label='Top Reinforcement (Negative Moment)'),
plt.scatter([], [], s=100, c='blue', marker='v', edgecolor='black',
label='Bottom Reinforcement (Positive Moment)')
]
ax.legend(handles=legend_elements, loc='upper right')
plt.tight_layout()
# Close any other open figures to free memory
for i in plt.get_fignums():
if i != fig.number:
plt.close(i)
return fig
def plot_stirrup_layout(self, design_results=None):
"""
Generate shear stirrup layout diagram
"""
if design_results is None:
design_results = self.design_beam()
fig, ax = plt.subplots(1, 1, figsize=(14, 6))
# Calculate positions
total_length = sum(span['length'] for span in self.spans)
span_positions = [0]
current_pos = 0
for span in self.spans:
current_pos += span['length']
span_positions.append(current_pos)
# Draw beam outline (side view)
beam_height = 0.5
ax.add_patch(plt.Rectangle((0, 0), total_length, beam_height,
fill=False, edgecolor='black', linewidth=2))
# Draw detailed stirrup layout for each span
for i, span_data in enumerate(design_results):
span_start = span_positions[i]
span_end = span_positions[i + 1]
span_length = span_end - span_start
# Get stirrup information with locations
stirrup_regions = []
for stirrup in span_data['stirrups']:
if 'No stirrups' not in stirrup['stirrup_spacing']:
# Extract stirrup type and spacing
stirrup_parts = stirrup['stirrup_spacing'].split(' @ ')
if len(stirrup_parts) == 2:
stirrup_type = stirrup_parts[0] # e.g., "RB9" or "RB6"
spacing_str = stirrup_parts[1].replace(' mm c/c', '')
try:
spacing_mm = float(spacing_str)
spacing_m = spacing_mm / 1000
stirrup_regions.append({
'location': stirrup['location'],
'type': stirrup_type,
'spacing_mm': spacing_mm,
'spacing_m': spacing_m,
'shear': stirrup['shear']
})
except:
pass
if stirrup_regions:
# Create detailed stirrup pattern for the span
# Divide span into regions based on stirrup requirements
regions = {
'Left Support': {'start': span_start, 'end': span_start + span_length * 0.25},
'Mid-span': {'start': span_start + span_length * 0.25, 'end': span_start + span_length * 0.75},
'Right Support': {'start': span_start + span_length * 0.75, 'end': span_end}
}
stirrup_positions = []
stirrup_labels = []
for stirrup_region in stirrup_regions:
location = stirrup_region['location']
if location in regions:
region_start = regions[location]['start']
region_end = regions[location]['end']
region_length = region_end - region_start
spacing = stirrup_region['spacing_m']
# Calculate stirrup positions in this region
num_stirrups = max(2, int(region_length / spacing) + 1)
actual_spacing = region_length / (num_stirrups - 1) if num_stirrups > 1 else region_length
for j in range(num_stirrups):
x_pos = region_start + j * actual_spacing
if x_pos <= region_end:
stirrup_positions.append(x_pos)
stirrup_labels.append({
'x': x_pos,
'type': stirrup_region['type'],
'spacing': stirrup_region['spacing_mm'],
'location': location
})
# Draw all stirrups
colors = {'RB6': 'green', 'RB9': 'darkgreen'}
for pos in stirrup_positions:
# Draw stirrup as detailed U-shape
stirrup_width = 0.02
# Main vertical lines
ax.plot([pos, pos], [beam_height*0.05, beam_height*0.95], 'g-', linewidth=3, alpha=0.8)
# Horizontal top and bottom connections
ax.plot([pos-stirrup_width, pos+stirrup_width], [beam_height*0.05, beam_height*0.05], 'g-', linewidth=2, alpha=0.8)
ax.plot([pos-stirrup_width, pos+stirrup_width], [beam_height*0.95, beam_height*0.95], 'g-', linewidth=2, alpha=0.8)
# Side connections
ax.plot([pos-stirrup_width, pos-stirrup_width], [beam_height*0.05, beam_height*0.95], 'g-', linewidth=2, alpha=0.8)
ax.plot([pos+stirrup_width, pos+stirrup_width], [beam_height*0.05, beam_height*0.95], 'g-', linewidth=2, alpha=0.8)
# Add spacing dimensions between stirrups
if len(stirrup_positions) >= 2:
# Group consecutive stirrups and show spacing
prev_pos = stirrup_positions[0]
for k in range(1, min(4, len(stirrup_positions))): # Show first few spacings
curr_pos = stirrup_positions[k]
spacing_actual = (curr_pos - prev_pos) * 1000 # Convert to mm
# Dimension line above beam
dim_y = beam_height + 0.15 + (k-1) * 0.08
ax.annotate('', xy=(prev_pos, dim_y), xytext=(curr_pos, dim_y),
arrowprops=dict(arrowstyle='<->', color='red', lw=1.5))
# Spacing text
ax.text((prev_pos + curr_pos) / 2, dim_y + 0.02, f'{spacing_actual:.0f}mm',
ha='center', va='bottom', fontsize=7, color='red', fontweight='bold',
bbox=dict(boxstyle="round,pad=0.1", facecolor="white", alpha=0.9))
# Vertical dimension lines
ax.plot([prev_pos, prev_pos], [beam_height, dim_y - 0.01], 'r--', linewidth=1, alpha=0.5)
ax.plot([curr_pos, curr_pos], [beam_height, dim_y - 0.01], 'r--', linewidth=1, alpha=0.5)
prev_pos = curr_pos
# Add stirrup type and spacing summary
mid_span = (span_start + span_end) / 2
# Create summary text for stirrup types used
stirrup_summary = []
for region in stirrup_regions:
stirrup_summary.append(f"{region['type']} @ {region['spacing_mm']:.0f}mm ({region['location']})")
summary_text = "\n".join(stirrup_summary)
ax.text(mid_span, beam_height + 0.4, f'Span {i+1} Stirrups:\n{summary_text}',
ha='center', va='bottom', fontsize=8,
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightgreen", alpha=0.7))
# Draw supports
for i, pos in enumerate(span_positions):
# Support line
ax.plot([pos, pos], [-0.1, beam_height + 0.05], 'r--', linewidth=2, alpha=0.7)
# Support symbol (triangle)
triangle = plt.Polygon([
[pos - 0.05, -0.1],
[pos + 0.05, -0.1],
[pos, -0.2]
], fill=True, facecolor='red', edgecolor='black')
ax.add_patch(triangle)
# Support label
ax.text(pos, -0.25, f'Support {i+1}', ha='center', va='top', fontsize=8, fontweight='bold')
# Add dimension lines and labels
for i, span in enumerate(self.spans):
span_start = span_positions[i]
span_end = span_positions[i + 1]
span_center = (span_start + span_end) / 2
# Dimension line
ax.annotate('', xy=(span_start, -0.3), xytext=(span_end, -0.3),
arrowprops=dict(arrowstyle='<->', color='black', lw=1))
# Span length label
ax.text(span_center, -0.35, f'{span["length"]}m',
ha='center', va='top', fontsize=10)
# Formatting with more space for detailed annotations
ax.set_xlim(-0.3, total_length + 0.3)
ax.set_ylim(-0.6, beam_height + 0.8)
ax.set_xlabel('Distance along beam (m)', fontsize=12)
ax.set_ylabel('Beam Cross-Section', fontsize=12)
ax.set_title('Detailed Shear Stirrup Layout with Spacing Dimensions', fontsize=14, fontweight='bold')
ax.grid(True, alpha=0.3)
# Add comprehensive legend
legend_elements = [
plt.Line2D([0], [0], color='green', linewidth=3, alpha=0.8, label='Stirrups (U-shaped)'),
plt.Line2D([0], [0], color='red', linestyle='-', linewidth=1.5, label='Spacing Dimensions'),
plt.Line2D([0], [0], color='red', linestyle='--', linewidth=2, alpha=0.7, label='Supports'),
plt.Rectangle((0,0),1,1, facecolor='lightgreen', alpha=0.7, label='Stirrup Details')
]
ax.legend(handles=legend_elements, loc='upper right', fontsize=10)
# Add beam dimensions annotation
ax.text(total_length/2, -0.45, f'Beam: {self.beam_width}mm × {self.beam_depth}mm',
ha='center', va='center', fontsize=10, fontweight='bold',
bbox=dict(boxstyle="round,pad=0.3", facecolor="lightyellow", alpha=0.8))
plt.tight_layout()
# Close any other open figures to free memory
for i in plt.get_fignums():
if i != fig.number:
plt.close(i)
return fig |