import os import cv2 import numpy as np import streamlit as st import matplotlib.pyplot as plt from shapely.geometry import Polygon, box as shapely_box import subprocess # ... (previous functions remain unchanged) def extract_class_0_coordinates(filename): class_0_coordinates = [] current_class = None with open(filename, 'r') as file: for line in file: parts = line.strip().split() if len(parts) == 0: continue if parts[0] == '0': coordinates = [float(x) for x in parts[1:]] class_0_coordinates.extend(coordinates) return class_0_coordinates def run_yolo_models1(img): # Run YOLOv9 segmentation os.system(f"python segment/predict.py --source {img} --img 640 --device cpu --weights models/segment/best-2.pt --name yolov9_c_640_detect --exist-ok --save-txt") # Run YOLOv9 detection os.system(f"python detect.py --source {img} --img 640 --device cpu --weights models/detect/yolov9-s-converted.pt --name yolov9_c_640_detect --exist-ok --save-txt") def parse_yolo_box(box_string): """Parse a YOLO format bounding box string.""" values = list(map(float, box_string.split())) if len(values) < 5: raise ValueError(f"Expected at least 5 values, got {len(values)}") return values[0], values[1], values[2], values[3], values[4] def read_yolo_boxes(file_path): boxes = [] with open(file_path, 'r') as f: for line in f: parts = line.strip().split() class_name = COCO_CLASSES[int(parts[0])] x, y, w, h = map(float, parts[1:5]) boxes.append((class_name, x, y, w, h)) return boxes def yolo_to_pixel_coord(x, y, img_width, img_height): """Convert a single YOLO coordinate to pixel coordinate.""" return int(x * img_width), int(y * img_height) def yolo_to_pixel_coords(x_center, y_center, width, height, img_width, img_height): """Convert YOLO format coordinates to pixel coordinates.""" x1 = int((x_center - width / 2) * img_width) y1 = int((y_center - height / 2) * img_height) x2 = int((x_center + width / 2) * img_width) y2 = int((y_center + height / 2) * img_height) return x1, y1, x2, y2 def box_segment_relationship(yolo_box, segment, img_width, img_height, threshold): """Check the relationship between a bounding box and a segmented area.""" class_id, x_center, y_center, width, height = yolo_box x1, y1, x2, y2 = yolo_to_pixel_coords(x_center, y_center, width, height, img_width, img_height) pixel_segment = convert_segment_to_pixel(segment, img_width, img_height) segment_polygon = Polygon(zip(pixel_segment[::2], pixel_segment[1::2])) box_polygon = shapely_box(x1, y1, x2, y2) if box_polygon.intersects(segment_polygon): return "intersecting" elif box_polygon.distance(segment_polygon) <= threshold: return "obstructed" else: return "not touching" def convert_segment_to_pixel(segment, img_width, img_height): """Convert segment coordinates from YOLO format to pixel coordinates.""" pixel_segment = [] for i in range(0, len(segment), 2): x, y = yolo_to_pixel_coord(segment[i], segment[i+1], img_width, img_height) pixel_segment.extend([x, y]) return pixel_segment def plot_boxes_and_segment(image, yolo_boxes, segment, img_width, img_height, threshold): """Plot the image with intersecting boxes, obstructed boxes, and segment.""" fig, ax = plt.subplots(figsize=(12, 8)) ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) pixel_segment = convert_segment_to_pixel(segment, img_width, img_height) ax.plot(pixel_segment[::2] + [pixel_segment[0]], pixel_segment[1::2] + [pixel_segment[1]], 'g-', linewidth=2, label='Rail Zone') colors = {'intersecting': 'r', 'obstructed': 'y', 'not touching': 'b'} labels = {'intersecting': 'Intersecting Box', 'obstructed': 'Obstructed Box', 'not touching': 'Non-interacting Box'} for yolo_box in yolo_boxes: class_id, x_center, y_center, width, height = yolo_box x1, y1, x2, y2 = yolo_to_pixel_coords(x_center, y_center, width, height, img_width, img_height) relationship = box_segment_relationship(yolo_box, segment, img_width, img_height, threshold) color = colors[relationship] label = labels[relationship] ax.add_patch(plt.Rectangle((x1, y1), x2-x1, y2-y1, fill=False, edgecolor=color, linewidth=2, label=label)) ax.legend() ax.axis('off') plt.tight_layout() return fig COCO_CLASSES = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] def read_yolo_boxes(file_path): boxes = [] with open(file_path, 'r') as f: for line in f: parts = line.strip().split() class_name = COCO_CLASSES[int(parts[0])] x, y, w, h = map(float, parts[1:5]) boxes.append((class_name, x, y, w, h)) return boxes def main(): st.title("YOLO Analysis App") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"]) if uploaded_file is not None: # Read the image as BGR image = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR) # Convert BGR to RGB image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) st.image(image_rgb, caption='Uploaded Image', use_column_width=True) if st.button('Run Analysis'): with st.spinner("Running detection..."): img_height, img_width = image.shape[:2] # Save the uploaded image temporarily temp_image_path = "temp_image.jpg" cv2.imwrite(temp_image_path, image) # Run YOLO models run_yolo_models1(temp_image_path) label_path = 'runs/predict-seg/yolov9_c_640_detect/labels/temp_image.txt' label_path2 = 'runs/detect/yolov9_c_640_detect/labels/temp_image.txt' segment = extract_class_0_coordinates(label_path) yolo_boxes = read_yolo_boxes(label_path2) threshold = 10 # Set threshold (in pixels) fig = plot_boxes_and_segment(image_rgb, yolo_boxes, segment, img_width, img_height, threshold) st.pyplot(fig) st.subheader("Analysis Results:") for class_name, x, y, w, h in yolo_boxes: result = box_segment_relationship((0, x, y, w, h), segment, img_width, img_height, threshold) st.write(f"{class_name} at ({x:.2f}, {y:.2f}) is {result} the segment.") # Clean up temporary files os.remove(temp_image_path) os.remove(label_path) os.remove(label_path2) if __name__ == "__main__": main()