File size: 3,345 Bytes
0365d58
 
 
 
 
 
 
 
 
d8e6a95
0365d58
 
 
d8e6a95
 
0365d58
d8e6a95
0365d58
 
d8e6a95
0365d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d5c68
0365d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd60f2c
0365d58
b4d5c68
0365d58
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr

from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

# Load feature extractor
feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "jakka/segformer-b0-finetuned-warehouse-part-1-V2"
)

# Load model using PyTorch weights
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "jakka/segformer-b0-finetuned-warehouse-part-1-V2", from_pt=True
)


def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [0,0,153],
        [0,153,153],
        [0,255,0],
        [0,255,255],
        [51,51,255],
        [102,255,255],
        [107,142,35],
        [138,43,226],
        [153,153,255],
        [160,82,45],
        [176,196,222],
        [192,192,192],
        [218,165,32],
        [255,51,255],
        [255,128,0],
        [255,153,255],
        [255,0,255],
        [255,255,0],
        [255,255,224],
        [255,255,240]
    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig

def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    )  # We reverse the shape of `image` because `image.size` returns width and height.
    seg = tf.math.argmax(logits, axis=-1)[0]

    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )  # height, width, 3
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    # Show image + mask
    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig

demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(1200, 800)),
                    outputs=['plot'],
                    examples=["warehouse-1.jpg", "warehouse-2.jpg", "warehouse-3.jpg", "warehouse-4.jpg","warehouse-5.jpg"],
                    allow_flagging='never')


demo.launch()