Spaces:
Paused
Paused
from flask import Flask, request, jsonify, send_from_directory | |
import torch | |
import shutil | |
import os | |
import sys | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
import tempfile | |
from openai import OpenAI | |
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings | |
from flask_cors import CORS, cross_origin | |
# from flask_swagger_ui import get_swaggerui_blueprint | |
import uuid | |
import time | |
from PIL import Image | |
import moviepy.editor as mp | |
import requests | |
import json | |
import pickle | |
import re | |
import aiohttp | |
import random | |
# from videoretalking import inference_function | |
# import base64 | |
# import gfpgan_enhancer | |
# import threading | |
# import elevenlabs | |
# from argparse import Namespace | |
# from argparse import ArgumentParser | |
# from time import strftime | |
# from src.utils.init_path import init_path | |
class AnimationConfig: | |
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded): | |
self.driven_audio = driven_audio_path | |
self.source_image = source_image_path | |
self.ref_eyeblink = None | |
self.ref_pose = ref_pose_video_path | |
self.checkpoint_dir = './checkpoints' | |
self.result_dir = result_folder | |
self.pose_style = pose_style | |
self.batch_size = 8 | |
self.expression_scale = expression_scale | |
self.input_yaw = None | |
self.input_pitch = None | |
self.input_roll = None | |
self.enhancer = enhancer | |
self.background_enhancer = None | |
self.cpu = False | |
self.face3dvis = False | |
self.still = still | |
self.preprocess = preprocess | |
self.verbose = False | |
self.old_version = False | |
self.net_recon = 'resnet50' | |
self.init_path = None | |
self.use_last_fc = False | |
self.bfm_folder = './checkpoints/BFM_Fitting/' | |
self.bfm_model = 'BFM_model_front.mat' | |
self.focal = 1015. | |
self.center = 112. | |
self.camera_d = 10. | |
self.z_near = 5. | |
self.z_far = 15. | |
self.device = 'cuda' | |
self.image_hardcoded = image_hardcoded | |
app = Flask(__name__) | |
CORS(app) | |
TEMP_DIR = None | |
start_time = None | |
VIDEO_DIRECTORY = None | |
args = None | |
unique_id = None | |
app.config['temp_response'] = None | |
app.config['generation_thread'] = None | |
app.config['text_prompt'] = None | |
app.config['final_video_path'] = None | |
app.config['final_video_duration'] = None | |
# Global paths | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
current_root_path = dir_path | |
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar') | |
# Function for running the actual task (using preprocessed data) | |
def process_chunk(audio_chunk, args): | |
print("Entered Process Chunk Function") | |
global audio2pose_checkpoint, audio2pose_yaml_path, audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint, path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting | |
global free_view_checkpoint | |
if args.preprocess == 'full': | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00109-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') | |
else: | |
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') | |
# first_coeff_path = preprocessed_data["first_coeff_path"] | |
# crop_pic_path = preprocessed_data["crop_pic_path"] | |
# crop_info_path = "/home/user/app/preprocess_data/crop_info.json" | |
# with open(crop_info_path , "rb") as f: | |
# crop_info = json.load(f) | |
# print(f"Loaded existing preprocessed data") | |
# print("first_coeff_path",first_coeff_path) | |
# print("crop_pic_path",crop_pic_path) | |
# print("crop_info",crop_info) | |
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, args.device) | |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(args.source_image, first_frame_dir, args.preprocess, source_image_flag=True) | |
torch.cuda.empty_cache() | |
batch = get_data(first_coeff_path, audio_chunk, args.device, ref_eyeblink_coeff_path=None, still=args.still) | |
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
audio2exp_checkpoint, audio2exp_yaml_path, | |
wav2lip_checkpoint, args.device) | |
coeff_path = audio_to_coeff.generate(batch, args.result_dir, args.pose_style, ref_pose_coeff_path=None) | |
# Further processing with animate_from_coeff using the coeff_path | |
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
facerender_yaml_path, args.device) | |
torch.cuda.empty_cache() | |
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_chunk, | |
args.batch_size, args.input_yaw, args.input_pitch, args.input_roll, | |
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) | |
torch.cuda.empty_cache() | |
print("Will Enter Animation") | |
result, base64_video, temp_file_path, _ = animate_from_coeff.generate(data, args.result_dir, args.source_image, crop_info, | |
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) | |
# video_clip = mp.VideoFileClip(temp_file_path) | |
# duration = video_clip.duration | |
app.config['temp_response'] = base64_video | |
app.config['final_video_path'] = temp_file_path | |
# app.config['final_video_duration'] = duration | |
torch.cuda.empty_cache() | |
return base64_video, temp_file_path | |
def create_temp_dir(): | |
return tempfile.TemporaryDirectory() | |
def save_uploaded_file(file, filename,TEMP_DIR): | |
unique_filename = str(uuid.uuid4()) + "_" + filename | |
file_path = os.path.join(TEMP_DIR.name, unique_filename) | |
file.save(file_path) | |
return file_path | |
client = OpenAI(api_key="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") | |
def openai_chat_avatar(text_prompt): | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "system", "content": "Summarize the following paragraph into a complete and accurate single sentence with no more than 30 words. The summary should capture the gist of the paragraph and make sense and remove the citation and document name from the end."}, | |
{"role": "user", "content": f"Please summarize the following paragraph into one sentence with 30 words or fewer, ensuring it makes sense and captures the gist and remove the citation from the end: {text_prompt}"}, | |
], | |
max_tokens = len(text_prompt), | |
) | |
return response | |
# def ryzedb_chat_avatar(question, app_id): | |
# url = "https://inference.dev.ryzeai.ai/chat/stream" | |
# # question = question + ". Summarize the answer in one line." | |
# # print("question",question) | |
# payload = json.dumps({ | |
# "input": { | |
# "chat_history": [], | |
# "app_id": app_id, | |
# "question": question | |
# }, | |
# "config": {"thread_id":"abc123"} | |
# }) | |
# headers = { | |
# 'Content-Type': 'application/json' | |
# } | |
# try: | |
# # Send the POST request | |
# response = requests.request("POST", url, headers=headers, data=payload) | |
# # Check for successful request | |
# response.raise_for_status() | |
# # Return the response JSON | |
# return response.text | |
# except requests.exceptions.RequestException as e: | |
# print(f"An error occurred: {e}") | |
# return None | |
# async def ryzedb_chat_avatar_async(question, app_id): | |
# url = "https://inference.dev.ryzeai.ai/chat/stream" | |
# payload = json.dumps({ | |
# "input": { | |
# "chat_history": [], | |
# "app_id": app_id, | |
# "question": question | |
# }, | |
# "config": {} | |
# }) | |
# headers = { | |
# 'Content-Type': 'application/json' | |
# } | |
# try: | |
# async with aiohttp.ClientSession() as session: | |
# async with session.post(url, headers=headers, data=payload) as response: | |
# response.raise_for_status() # Raise exception for bad status | |
# return await response.text() | |
# except aiohttp.ClientError as e: | |
# print(f"RyzeDB API error: {e}") | |
# return None | |
# except Exception as e: | |
# print(f"Unexpected error: {e}") | |
# return None | |
def ryzedb_chat_avatar(question, app_id): | |
url = "https://inference.dev.ryzeai.ai/v2/chat/stream" | |
print("ryze db question",question) | |
# thread_id = str(random.randint(1000, 99999)) | |
# print("Generated thread_id:", thread_id) | |
payload = { | |
"input": { | |
"app_id": app_id, | |
"query": question, | |
"chat_history": [] | |
}, | |
"config": { | |
"thread_id": "123456" | |
}} | |
headers = { | |
'Content-Type': 'application/json' | |
} | |
response = requests.post(url, json=payload, headers=headers, stream=True) | |
try: | |
raw_text = response.text.strip() | |
if raw_text.startswith("data:"): | |
raw_text = raw_text[len("data:"):].strip() | |
json_data = json.loads(raw_text) | |
response = json_data.get("content", "") | |
return response | |
except Exception as e: | |
print("Error parsing response:", e) | |
return "" | |
# content_buffer = [] | |
# for line in response.iter_lines(): | |
# if line: | |
# try: | |
# decoded = line.decode("utf-8") | |
# if decoded.startswith("data:"): | |
# data_str = decoded[5:].strip() | |
# if data_str: | |
# json_data = json.loads(data_str) | |
# content = json_data.get("content") | |
# if content: | |
# content_buffer.append(content) | |
# except Exception as e: | |
# print("Error parsing line:", e) | |
# return " ".join(content_buffer) | |
def custom_cleanup(temp_dir, exclude_dir): | |
# Iterate over the files and directories in TEMP_DIR | |
for filename in os.listdir(temp_dir): | |
file_path = os.path.join(temp_dir, filename) | |
# Skip the directory we want to exclude | |
if file_path != exclude_dir: | |
try: | |
if os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
else: | |
os.remove(file_path) | |
print(f"Deleted: {file_path}") | |
except Exception as e: | |
print(f"Failed to delete {file_path}. Reason: {e}") | |
def generate_audio(voice_cloning, voice_gender, text_prompt): | |
print("generate_audio") | |
if voice_cloning == 'no': | |
if voice_gender == 'male': | |
voice = 'echo' | |
print('Entering Audio creation using elevenlabs') | |
set_api_key('sk_296eef2e3c7bfe1e45d44483e19acc675d091e9ae82489e8') | |
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_monolingual_v1",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
print('Audio file saved using elevenlabs') | |
else: | |
voice = 'nova' | |
print('Entering Audio creation using whisper') | |
response = client.audio.speech.create(model="tts-1-hd", | |
voice=voice, | |
input = text_prompt) | |
print('Audio created using whisper') | |
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
driven_audio_path = temp_file.name | |
response.write_to_file(driven_audio_path) | |
print('Audio file saved using whisper') | |
elif voice_cloning == 'yes': | |
set_api_key('sk_296eef2e3c7bfe1e45d44483e19acc675d091e9ae82489e8') | |
# voice = clone(name = "User Cloned Voice", | |
# files = [user_voice_path] ) | |
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings( | |
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),) | |
audio = generate(text = text_prompt, voice = voice, model = "eleven_monolingual_v1",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
# audio_duration = get_audio_duration(driven_audio_path) | |
# print('Total Audio Duration in seconds',audio_duration) | |
return driven_audio_path | |
def run_preprocessing(args): | |
global path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting | |
first_frame_dir = os.path.join(args.result_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
fixed_temp_dir = "/home/user/app/preprocess_data/" | |
os.makedirs(fixed_temp_dir, exist_ok=True) | |
preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl") | |
if os.path.exists(preprocessed_data_path) and args.image_hardcoded == "yes": | |
print("Loading preprocessed data...") | |
with open(preprocessed_data_path, "rb") as f: | |
preprocessed_data = pickle.load(f) | |
print("Loaded existing preprocessed data from:", preprocessed_data_path) | |
return preprocessed_data | |
# def remove_brackets(text): | |
# # Use regex to remove content in brackets at the end of the text | |
# cleaned_text = re.sub(r'\s*\[.*?\]\s*$', '', text) | |
# return cleaned_text.strip() | |
# def extract_content(data): | |
# pattern = r'"content":"((?:\\.|[^"\\])*)"' | |
# match = re.search(pattern, data) | |
# if match: | |
# return match.group(1) | |
# else: | |
# return None | |
def extract_content(line): | |
print("line :", line) | |
if line.startswith("data:"): | |
print("Entering extract content") | |
json_part = line[len("data:"):].strip() | |
if json_part: | |
try: | |
parsed = json.loads(json_part) | |
return parsed.get("content") | |
except json.JSONDecodeError: | |
pass | |
return None | |
def generate_video(): | |
print("Entered endpoint") | |
global start_time, VIDEO_DIRECTORY | |
start_time = time.time() | |
global TEMP_DIR | |
TEMP_DIR = create_temp_dir() | |
print('request:',request.method) | |
try: | |
if request.method == 'POST': | |
print("Entered") | |
# source_image = request.files['source_image'] | |
image_path = '/home/user/app/images/new.jpg' | |
source_image = Image.open(image_path) | |
text_prompt = request.form['text_prompt'] | |
print('Input text prompt: ',text_prompt) | |
text_prompt = text_prompt.strip() | |
if not text_prompt: | |
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 | |
voice_cloning = request.form.get('voice_cloning', 'no') | |
image_hardcoded = request.form.get('image_hardcoded', 'yes') | |
chat_model_used = request.form.get('chat_model_used', 'ryzedb') | |
target_language = request.form.get('target_language', 'original_text') | |
print('target_language',target_language) | |
pose_style = int(request.form.get('pose_style', 1)) | |
expression_scale = float(request.form.get('expression_scale', 1)) | |
enhancer = request.form.get('enhancer', None) | |
voice_gender = request.form.get('voice_gender', 'male') | |
still_str = request.form.get('still', 'False') | |
still = still_str.lower() == 'false' | |
print('still', still) | |
preprocess = request.form.get('preprocess', 'crop') | |
print('preprocess selected: ',preprocess) | |
ref_pose_video = request.files.get('ref_pose', None) | |
app_id = request.form['app_id'] | |
if not app_id: | |
return jsonify({'error': 'App ID cannot be blank'}), 400 | |
if chat_model_used == 'ryzedb': | |
start_time_ryze = time.time() | |
text_prompt = ryzedb_chat_avatar(text_prompt, app_id) | |
print("Response from inference",text_prompt) | |
# text_prompt = extract_content(response) | |
# text_prompt = text_prompt.replace('\n', ' ').replace('\\n', ' ').strip() | |
if "No information available" in text_prompt: | |
text_prompt = re.sub(r'\\+', '', text_prompt) | |
response = openai_chat_avatar(text_prompt) | |
text_prompt = response.choices[0].message.content.strip() | |
app.config['text_prompt'] = text_prompt | |
print('Final output text prompt using ryzedb: ',text_prompt) | |
# events = response.split('\r\n\r\n') | |
# content = None | |
# for event in events: | |
# # Split each event block by "\r\n" to get the lines | |
# lines = event.split('\r\n') | |
# if len(lines) > 1 and lines[0] == 'event: data': | |
# # Extract the JSON part from the second line and parse it | |
# json_data = lines[1].replace('data: ', '') | |
# try: | |
# data = json.loads(json_data) | |
# text_prompt = data.get('content') | |
# app.config['text_prompt'] = text_prompt | |
# end_time_ryze = time.time() | |
# diff = end_time_ryze - start_time_ryze | |
# print('Final output text prompt using ryzedb: ',text_prompt) | |
# print('Time to get response from ryzedb: ',diff) | |
# break # Exit the loop once content is found | |
# except json.JSONDecodeError: | |
# continue | |
elif chat_model_used == 'self': | |
text_prompt = text_prompt.strip() | |
else: | |
print("No Ryze database found") | |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) | |
print(source_image_path) | |
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt) | |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) | |
result_folder = os.path.join(save_dir, "results") | |
os.makedirs(result_folder, exist_ok=True) | |
ref_pose_video_path = None | |
if ref_pose_video: | |
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
ref_pose_video_path = temp_file.name | |
ref_pose_video.save(ref_pose_video_path) | |
print('ref_pose_video_path',ref_pose_video_path) | |
except Exception as e: | |
app.logger.error(f"An error occurred: {e}") | |
return "An error occurred", 500 | |
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded) | |
if torch.cuda.is_available() and not args.cpu: | |
args.device = "cuda" | |
else: | |
args.device = "cpu" | |
# generation_thread = threading.Thread(target=main, args=(args,)) | |
# app.config['generation_thread'] = generation_thread | |
# generation_thread.start() | |
# response_data = {"message": "Video generation started", | |
# "process_id": generation_thread.ident} | |
try: | |
# preprocessed_data = run_preprocessing(args) | |
base64_video, temp_file_path = process_chunk(driven_audio_path, args) | |
final_video_path = app.config['final_video_path'] | |
print('final_video_path',final_video_path) | |
if temp_file_path and temp_file_path.endswith('.mp4'): | |
filename = os.path.basename(temp_file_path) | |
os.makedirs('videos', exist_ok=True) | |
VIDEO_DIRECTORY = os.path.abspath('videos') | |
print("VIDEO_DIRECTORY: ",VIDEO_DIRECTORY) | |
destination_path = os.path.join(VIDEO_DIRECTORY, filename) | |
shutil.copy(temp_file_path, destination_path) | |
video_url = f"/videos/{filename}" | |
if final_video_path and os.path.exists(final_video_path): | |
os.remove(final_video_path) | |
print("Deleted video file:", final_video_path) | |
preprocess_dir = os.path.join("/tmp", "preprocess_data") | |
custom_cleanup(TEMP_DIR.name, preprocess_dir) | |
print("Temporary files cleaned up, but preprocess_data is retained.") | |
end_time = time.time() | |
time_taken = end_time - start_time | |
print(f"Time taken for endpoint: {time_taken:.2f} seconds") | |
return jsonify({ | |
"message": "Video processed and saved successfully.", | |
"video_url": video_url, | |
"text_prompt": text_prompt, | |
"time_taken": time_taken, | |
"status": "success" | |
}) | |
else: | |
return jsonify({ | |
"message": "Failed to process the video.", | |
"status": "error" | |
}), 500 | |
except Exception as e: | |
return jsonify({'status': 'error', 'message': str(e)}), 500 | |
def serve_video(filename): | |
global VIDEO_DIRECTORY | |
return send_from_directory(VIDEO_DIRECTORY, filename, as_attachment=False) | |
# @app.route("/status", methods=["GET"]) | |
# def check_generation_status(): | |
# global TEMP_DIR | |
# global start_time | |
# response = {"base64_video": "","text_prompt":"", "status": ""} | |
# process_id = request.args.get('process_id', None) | |
# # process_id is required to check the status for that specific process | |
# if process_id: | |
# generation_thread = app.config.get('generation_thread') | |
# if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive(): | |
# return jsonify({"status": "in_progress"}), 200 | |
# elif app.config.get('temp_response'): | |
# # app.config['temp_response']['status'] = 'completed' | |
# final_response = app.config['temp_response'] | |
# response["base64_video"] = final_response | |
# response["text_prompt"] = app.config.get('text_prompt') | |
# response["duration"] = app.config.get('final_video_duration') | |
# response["status"] = "completed" | |
# final_video_path = app.config['final_video_path'] | |
# print('final_video_path',final_video_path) | |
# if final_video_path and os.path.exists(final_video_path): | |
# os.remove(final_video_path) | |
# print("Deleted video file:", final_video_path) | |
# # TEMP_DIR.cleanup() | |
# preprocess_dir = os.path.join("/tmp", "preprocess_data") | |
# custom_cleanup(TEMP_DIR.name, preprocess_dir) | |
# print("Temporary files cleaned up, but preprocess_data is retained.") | |
# end_time = time.time() | |
# total_time = round(end_time - start_time, 2) | |
# print("Total time taken for execution:", total_time, " seconds") | |
# response["time_taken"] = total_time | |
# return jsonify(response) | |
# return jsonify({"error":"No process id provided"}) | |
def health_status(): | |
response = {"online": "true"} | |
return jsonify(response) | |
if __name__ == '__main__': | |
app.run(debug=True) |