|
"""This script is the data preparation script for Deep3DFaceRecon_pytorch
|
|
"""
|
|
|
|
import os
|
|
import numpy as np
|
|
import argparse
|
|
from util.detect_lm68 import detect_68p,load_lm_graph
|
|
from util.skin_mask import get_skin_mask
|
|
from util.generate_list import check_list, write_list
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--data_root', type=str, default='datasets', help='root directory for training data')
|
|
parser.add_argument('--img_folder', nargs="+", required=True, help='folders of training images')
|
|
parser.add_argument('--mode', type=str, default='train', help='train or val')
|
|
opt = parser.parse_args()
|
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
|
|
def data_prepare(folder_list,mode):
|
|
|
|
lm_sess,input_op,output_op = load_lm_graph('./checkpoints/lm_model/68lm_detector.pb')
|
|
|
|
for img_folder in folder_list:
|
|
detect_68p(img_folder,lm_sess,input_op,output_op)
|
|
get_skin_mask(img_folder)
|
|
|
|
|
|
msks_list = []
|
|
for img_folder in folder_list:
|
|
path = os.path.join(img_folder, 'mask')
|
|
msks_list += ['/'.join([img_folder, 'mask', i]) for i in sorted(os.listdir(path)) if 'jpg' in i or
|
|
'png' in i or 'jpeg' in i or 'PNG' in i]
|
|
|
|
imgs_list = [i.replace('mask/', '') for i in msks_list]
|
|
lms_list = [i.replace('mask', 'landmarks') for i in msks_list]
|
|
lms_list = ['.'.join(i.split('.')[:-1]) + '.txt' for i in lms_list]
|
|
|
|
lms_list_final, imgs_list_final, msks_list_final = check_list(lms_list, imgs_list, msks_list)
|
|
write_list(lms_list_final, imgs_list_final, msks_list_final, mode=mode)
|
|
|
|
if __name__ == '__main__':
|
|
print('Datasets:',opt.img_folder)
|
|
data_prepare([os.path.join(opt.data_root,folder) for folder in opt.img_folder],opt.mode)
|
|
|