Spaces:
Sleeping
Sleeping
File size: 9,310 Bytes
0539585 924c36d 1bc9208 0539585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
import pandas as pd
import warnings
import os
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn
warnings.filterwarnings('ignore')
class ArabicProfanityTester:
def __init__(self, model_name='Speccco/arabic_profanity_filter'):
"""Initialize the tester with model from Hugging Face Hub"""
print(f"🔄 Loading model from Hugging Face Hub: {model_name}...")
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.model.eval()
print("✅ Model loaded successfully from Hugging Face Hub!")
print(f"📊 Model configuration:")
print(f" - Model type: {type(self.model).__name__}")
print(f" - Number of labels: {self.model.config.num_labels}")
print(f" - Max position embeddings: {self.model.config.max_position_embeddings}")
except Exception as e:
print(f"❌ Failed to load model from Hub: {e}")
print("🔄 Falling back to base AraBERT model...")
# Fallback to base model
base_model = "aubmindlab/bert-base-arabertv02"
self.tokenizer = AutoTokenizer.from_pretrained(base_model)
self.model = AutoModelForSequenceClassification.from_pretrained(
base_model,
num_labels=2
)
self.model.eval()
print("⚠️ Using base AraBERT model (not fine-tuned)")
def preprocess_text(self, text):
"""Simple text preprocessing"""
if pd.isna(text):
return ""
text = str(text)
# Remove URLs, mentions, hashtags
text = re.sub(r'http\S+|www\S+|https\S+', '', text, flags=re.MULTILINE)
text = re.sub(r'@\w+|#\w+', '', text)
# Remove emojis and other unicode symbols
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002702-\U000027B0" # dingbats
u"\U000024C2-\U0001F251" # enclosed characters
u"\U0001F900-\U0001F9FF" # supplemental symbols
u"\U0001FA00-\U0001FAFF" # extended symbols
u"\u2600-\u26FF" # miscellaneous symbols
u"\u2700-\u27BF" # dingbats
u"\uFE00-\uFE0F" # variation selectors
u"\u200D" # zero width joiner
"]+", flags=re.UNICODE)
text = emoji_pattern.sub(r'', text)
# Remove English alphabets
text = re.sub(r'[a-zA-Z]', '', text)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def check_bad_words(self, text):
"""Check if text contains explicit bad Arabic/Egyptian words"""
bad_words = [
'شرموطة', 'خرا', 'زفت', 'أمك', 'يلعن دينك', 'متناك',
'منيك', 'نايك', 'طيز', 'عرص', 'قواد', 'وسخة', 'كسك',
'يا دين أمي', 'ابن وسخة'
]
text_lower = text.lower()
found_words = []
for bad_word in bad_words:
if bad_word.lower() in text_lower:
found_words.append(bad_word)
return len(found_words) > 0, found_words
def predict(self, text, show_details=True):
"""Predict if text is offensive or not with bad words override"""
# Preprocess text
processed_text = self.preprocess_text(text)
# Check for explicit bad words first
has_bad_words, found_bad_words = self.check_bad_words(text)
# Tokenize
inputs = self.tokenizer(
processed_text,
return_tensors='pt',
truncation=True,
max_length=256,
padding=True
)
# Get model prediction
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
model_predicted_class = torch.argmax(probabilities, dim=-1).item()
model_confidence = probabilities[0][model_predicted_class].item()
# Final decision: bad words override model prediction
if has_bad_words:
final_prediction = "Bad"
final_class = 1 # Offensive
override_reason = f"Contains explicit bad words: {', '.join(found_bad_words)}"
else:
final_prediction = "Good" if model_predicted_class == 0 else "Bad"
final_class = model_predicted_class
override_reason = None
# Prepare result
result = {
'original_text': text,
'processed_text': processed_text,
'model_prediction': 'Offensive' if model_predicted_class == 1 else 'Non-Offensive',
'model_confidence': model_confidence,
'final_prediction': final_prediction,
'final_class': final_class,
'has_bad_words': has_bad_words,
'found_bad_words': found_bad_words,
'override_reason': override_reason,
'probabilities': {
'non_offensive': probabilities[0][0].item(),
'offensive': probabilities[0][1].item()
}
}
return result
class ProfanityRequest(BaseModel):
text: str
class BatchProfanityRequest(BaseModel):
texts: list[str]
app = FastAPI(
title="Arabic Profanity Filter API",
description="An API to detect profanity in Arabic text using a fine-tuned AraBERT model with rule-based override.",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# Initialize the tester globally
tester = None
@app.on_event("startup")
async def startup_event():
"""Initialize the model on startup"""
global tester
try:
tester = ArabicProfanityTester()
print("🚀 Arabic Profanity Filter API is ready!")
except Exception as e:
print(f"❌ Failed to load model: {e}")
raise e
@app.get("/", tags=["General"])
def read_root():
return {
"message": "Welcome to the Arabic Profanity Filter API",
"description": "Detects profanity in Arabic text using AraBERT model with rule-based override",
"endpoints": {
"predict": "/predict - Single text prediction",
"batch": "/batch - Batch text prediction",
"health": "/health - Health check",
"docs": "/docs - API documentation"
}
}
@app.get("/health", tags=["General"])
def health_check():
"""Health check endpoint"""
if tester is None:
return {"status": "unhealthy", "message": "Model not loaded"}
return {"status": "healthy", "message": "API is running"}
@app.post("/predict", tags=["Prediction"])
async def predict_profanity(request: ProfanityRequest):
"""
Predicts if the given Arabic text contains profanity.
- **text**: The Arabic text to analyze.
Returns:
- original_text: The input text
- processed_text: Text after preprocessing
- model_prediction: Model's prediction (Offensive/Non-Offensive)
- model_confidence: Model's confidence score
- final_prediction: Final result (Good/Bad) after rule-based override
- has_bad_words: Whether explicit bad words were found
- found_bad_words: List of bad words found
- probabilities: Detailed probability scores
"""
if tester is None:
return {"error": "Model not loaded"}
try:
result = tester.predict(request.text, show_details=False)
return result
except Exception as e:
return {"error": f"Prediction failed: {str(e)}"}
@app.post("/batch", tags=["Prediction"])
async def predict_batch_profanity(request: BatchProfanityRequest):
"""
Predicts profanity for multiple Arabic texts.
- **texts**: List of Arabic texts to analyze.
Returns list of prediction results for each text.
"""
if tester is None:
return {"error": "Model not loaded"}
try:
results = []
for text in request.texts:
result = tester.predict(text, show_details=False)
results.append(result)
return {
"predictions": results,
"summary": {
"total": len(results),
"bad_count": sum(1 for r in results if r['final_prediction'] == 'Bad'),
"good_count": sum(1 for r in results if r['final_prediction'] == 'Good'),
"explicit_bad_words_count": sum(1 for r in results if r['has_bad_words'])
}
}
except Exception as e:
return {"error": f"Batch prediction failed: {str(e)}"}
if __name__ == "__main__":
import os
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
|