File size: 6,011 Bytes
8535875
 
678fc41
8535875
c138338
678fc41
 
 
 
8535875
c138338
 
 
 
 
5db8a67
 
c138338
 
678fc41
c138338
8535875
678fc41
 
8535875
c138338
678fc41
 
 
 
 
c138338
 
 
 
 
678fc41
 
c138338
 
678fc41
 
8535875
8ebe5d8
0f519d6
 
 
 
8ebe5d8
5db8a67
 
c09aa0d
0f519d6
c09aa0d
 
8ebe5d8
c138338
5db8a67
 
 
c138338
5db8a67
 
 
c138338
5db8a67
 
 
 
 
3759290
8ebe5d8
0f519d6
c138338
c09aa0d
c138338
 
 
 
 
c09aa0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db8a67
c138338
 
 
 
fbbfccf
 
c09aa0d
 
0f519d6
c138338
 
 
0f519d6
 
 
c09aa0d
 
 
 
 
 
 
 
5db8a67
 
 
0f519d6
5db8a67
0f519d6
5db8a67
 
 
 
 
 
 
0f519d6
5db8a67
 
 
 
0f519d6
5db8a67
 
 
8ebe5d8
 
5db8a67
c09aa0d
 
 
 
15b03f8
c09aa0d
15b03f8
c09aa0d
 
 
8ebe5d8
8535875
678fc41
5db8a67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
import cv2

def create_dot_effect(image, dot_size=10, spacing=2, invert=False):
    if len(image.shape) == 3:
        gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    else:
        gray = image
    
    gray = cv2.adaptiveThreshold(
        gray,
        255,
        cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
        cv2.THRESH_BINARY,
        25,
        5
    )
    
    height, width = gray.shape
    canvas = np.zeros_like(gray) if not invert else np.full_like(gray, 255)
    
    y_dots = range(0, height, dot_size + spacing)
    x_dots = range(0, width, dot_size + spacing)
    
    dot_color = 255 if not invert else 0
    for y in y_dots:
        for x in x_dots:
            region = gray[y:min(y+dot_size, height), x:min(x+dot_size, width)]
            if region.size > 0:
                brightness = np.mean(region)
                relative_brightness = brightness / 255.0
                if invert:
                    relative_brightness = 1 - relative_brightness
                radius = int((dot_size/2) * relative_brightness)
                if radius > 0:
                    cv2.circle(canvas, 
                             (x + dot_size//2, y + dot_size//2), 
                             radius, 
                             (dot_color), 
                             -1)
    return canvas

def process_video(video_path, dot_size=10, spacing=2, invert=False, fps=30):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None

    orig_fps = int(cap.get(cv2.CAP_PROP_FPS))
    orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Ensure output FPS does not exceed input FPS
    output_fps = min(fps, orig_fps)
    
    max_height = 720
    if orig_height > max_height:
        scale = max_height / orig_height
        frame_width = int(orig_width * scale)
        frame_height = max_height
    else:
        frame_width = orig_width
        frame_height = orig_height
    
    # Ensure even dimensions for video codec compatibility
    frame_width = frame_width // 2 * 2
    frame_height = frame_height // 2 * 2
    
    output_path = "output.mp4"
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, output_fps, (frame_width, frame_height), True)

    try:
        frame_counter = 0
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            
            # Skip or duplicate frames based on FPS ratio
            if output_fps < orig_fps:
                # Skip frames to match the output FPS
                if frame_counter % (orig_fps // output_fps) != 0:
                    frame_counter += 1
                    continue
            elif output_fps > orig_fps:
                # Duplicate frames to match the output FPS
                for _ in range(output_fps // orig_fps):
                    if frame.shape[0] != frame_height:
                        frame = cv2.resize(frame, (frame_width, frame_height))
                    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    dotted_frame = create_dot_effect(frame_rgb, dot_size, spacing, invert)
                    dotted_frame_bgr = cv2.cvtColor(dotted_frame, cv2.COLOR_GRAY2BGR)
                    out.write(dotted_frame_bgr)
            
            if frame.shape[0] != frame_height:
                frame = cv2.resize(frame, (frame_width, frame_height))
            
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            dotted_frame = create_dot_effect(frame_rgb, dot_size, spacing, invert)
            dotted_frame_bgr = cv2.cvtColor(dotted_frame, cv2.COLOR_GRAY2BGR)
            out.write(dotted_frame_bgr)
            
            frame_counter += 1

    finally:
        cap.release()
        out.release()
    
    return output_path

def get_video_fps(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return 30  # Default FPS if video cannot be opened
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    cap.release()
    return fps

with gr.Blocks(title="Dot Effect Generator") as iface:
    gr.Markdown("# 🎨 Dot Effect Generator")
    gr.Markdown("Transform media into stylized dot patterns")
    
    with gr.Tab("🖼️ Image"):
        with gr.Row():
            img_input = gr.Image(label="Input")
            img_output = gr.Image(label="Output")
        with gr.Row():
            img_dot_size = gr.Slider(2, 20, 10, step=1, label="Dot Size")
            img_spacing = gr.Slider(0, 10, 2, step=1, label="Spacing")
        img_btn = gr.Button("Generate", variant="primary")
        img_btn.click(create_dot_effect, [img_input, img_dot_size, img_spacing], img_output)
    
    with gr.Tab("🎥 Video"):
        with gr.Row():
            vid_input = gr.Video(label="Input", format="mp4")
            vid_output = gr.Video(label="Output", format="mp4")
        with gr.Row():
            vid_dot_size = gr.Slider(2, 20, 10, step=1, label="Dot Size")
            vid_spacing = gr.Slider(0, 10, 2, step=1, label="Spacing")
            vid_invert = gr.Checkbox(label="Invert Colors")
        with gr.Row():
            vid_fps = gr.Slider(1, 60, 30, step=1, label="Output FPS")
        vid_btn = gr.Button("Process Video", variant="primary")
        
        # Update FPS slider max value based on input video
        def update_fps_slider(video_path):
            if video_path is None:
                return gr.update(maximum=60, value=30)  # Default if no video
            fps = get_video_fps(video_path)
            return gr.update(maximum=fps, value=min(fps, 30))
        
        vid_input.change(update_fps_slider, vid_input, vid_fps)
        
        vid_btn.click(process_video, [vid_input, vid_dot_size, vid_spacing, vid_invert, vid_fps], vid_output)

if __name__ == "__main__":
    iface.launch(server_port=7860, show_error=True)