File size: 3,566 Bytes
a136c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import torch
from diffusers import AutoPipelineForText2Image

# List of available models
MODEL_OPTIONS = {
    "Stable Diffusion 1.5": "runwayml/stable-diffusion-v1-5",
    "Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1", 
    "Stable Diffusion XL": "stabilityai/stable-diffusion-xl-base-1.0"
}

def generate_image(
    model_choice,
    lora_url,
    prompt,
    negative_prompt,
    steps,
    width,
    height,
    guidance_scale,
    seed
):
    # Get the selected model ID
    model_id = MODEL_OPTIONS[model_choice]
    
    # Initialize the pipeline
    pipe = AutoPipelineForText2Image.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        use_safetensors=True
    ).to("cuda")

    # Load LoRA weights if provided
    if lora_url:
        pipe.load_lora_weights(lora_url)
        pipe.fuse_lora()

    # Set up generator with seed if provided
    generator = None
    if seed:
        generator = torch.Generator(device="cuda").manual_seed(int(seed))

    # Generate image
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_inference_steps=int(steps),
        width=int(width),
        height=int(height),
        guidance_scale=guidance_scale,
        generator=generator
    ).images[0]

    return image

# Gradio UI components
with gr.Blocks() as demo:
    gr.Markdown("## 🎨 Text-to-Image Generation with LoRA")
    
    with gr.Row():
        with gr.Column():
            model_choice = gr.Dropdown(
                label="Select Base Model",
                choices=list(MODEL_OPTIONS.keys()),
                value="Stable Diffusion XL"
            )
            lora_url = gr.Textbox(
                label="LoRA Repository ID (e.g., 'username/lora-name')",
                placeholder="Optional Hugging Face repository ID"
            )
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt here..."
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                placeholder="Enter what to exclude from the image..."
            )
            
            with gr.Row():
                steps = gr.Number(
                    label="Inference Steps",
                    value=25,
                    precision=0
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1.0,
                    maximum=20.0,
                    value=7.5
                )
                
            with gr.Row():
                width = gr.Number(
                    label="Width",
                    value=1024,
                    precision=0
                )
                height = gr.Number(
                    label="Height", 
                    value=1024,
                    precision=0
                )
                seed = gr.Number(
                    label="Seed (optional)",
                    precision=0
                )
            
            generate_btn = gr.Button("Generate Image", variant="primary")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image", height=600)

    generate_btn.click(
        fn=generate_image,
        inputs=[
            model_choice,
            lora_url,
            prompt,
            negative_prompt,
            steps,
            width,
            height,
            guidance_scale,
            seed
        ],
        outputs=output_image
    )

demo.launch()