Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
@@ -62,3 +63,71 @@ demo = gr.ChatInterface(
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
demo.launch()
|
66 |
+
'''
|
67 |
+
|
68 |
+
import gradio as gr
|
69 |
+
from langchain.chains import LLMChain
|
70 |
+
from langchain.prompts import PromptTemplate
|
71 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
72 |
+
from langgraph.graph import StateGraph
|
73 |
+
|
74 |
+
# Define the LLM models
|
75 |
+
llm1 = HuggingFaceEndpoint(model='t5-small')
|
76 |
+
llm2 = HuggingFaceEndpoint(model='t5-large')
|
77 |
+
|
78 |
+
# Define the agent functions
|
79 |
+
def agent1(query):
|
80 |
+
return f"Agent 1: {query}"
|
81 |
+
|
82 |
+
def agent2(query):
|
83 |
+
return f"Agent 2: {query}"
|
84 |
+
|
85 |
+
# Define the states
|
86 |
+
s1 = StateGraph("s1")
|
87 |
+
s2 = StateGraph("s2")
|
88 |
+
|
89 |
+
# Define the LLM chains
|
90 |
+
chain1 = LLMChain(llm=llm1, prompt=PromptTemplate(input_variables=["query"], template="You are in state s1. {{query}}"))
|
91 |
+
chain2 = LLMChain(llm=llm2, prompt=PromptTemplate(input_variables=["query"], template="You are in state s2. {{query}}"))
|
92 |
+
|
93 |
+
# Define the transition functions
|
94 |
+
def transition_s1(query):
|
95 |
+
output = chain1.invoke(query=query)
|
96 |
+
return agent1(output), s2
|
97 |
+
|
98 |
+
def transition_s2(query):
|
99 |
+
output = chain2.invoke(query=query)
|
100 |
+
return agent2(output), s1
|
101 |
+
|
102 |
+
# Define the respond function
|
103 |
+
def respond(input, history, current_state):
|
104 |
+
if current_state == s1:
|
105 |
+
response, next_state = transition_s1(input)
|
106 |
+
elif current_state == s2:
|
107 |
+
response, next_state = transition_s2(input)
|
108 |
+
history.append((input, response))
|
109 |
+
return history, next_state
|
110 |
+
|
111 |
+
# Create the Gradio interface
|
112 |
+
current_state = s1 # Define current_state here
|
113 |
+
|
114 |
+
with gr.Blocks() as demo:
|
115 |
+
gr.Markdown("# Chatbot Interface")
|
116 |
+
chatbot_interface = gr.Chatbot()
|
117 |
+
user_input = gr.Textbox(label="Your Message", placeholder="Type something...")
|
118 |
+
submit_btn = gr.Button("Send")
|
119 |
+
|
120 |
+
# Define the behavior of the submit button
|
121 |
+
def submit_click(input, history):
|
122 |
+
global current_state # Use global instead of nonlocal
|
123 |
+
history, current_state = respond(input, history, current_state)
|
124 |
+
return history
|
125 |
+
|
126 |
+
submit_btn.click(
|
127 |
+
fn=submit_click,
|
128 |
+
inputs=[user_input, chatbot_interface],
|
129 |
+
outputs=chatbot_interface
|
130 |
+
)
|
131 |
+
|
132 |
+
# Launch the Gradio application
|
133 |
+
demo.launch()
|