File size: 1,223 Bytes
a1f7b8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import yfinance as yf
from transformers import pipeline
from collections import Counter
import gradio as gr

def search(symbol):
  bot=pipeline('sentiment-analysis')

  ticker=yf.Ticker(symbol)

  pos=0
  neg=0
  neu=0

  news=ticker.news

  for item in news[:100]:
      content=item['content']['title']
     
      
      result=bot(content)
      sentiment=result[0]['label']

      if sentiment=='POSITIVE':
          pos+=1
      elif sentiment=='NEGATIVE':
          neg+=1
      else:
          neu+=1

  print('Positive news: '+str(pos))
  print('Negative news: '+str(neg))
  print('Neutral news: '+str(neu))

  if pos>neg and pos>neu:
      overall='BULLISH'
  elif neg>pos and neg>neu:
      overall='BEARISH'
  else:
      overall='NEUTRAL'

  return 'Out of 10 results'+'\nPositive news: '+str(pos)+'\nNegative news: '+str(neg)+'\nNeutral news: '+str(neu)+'\n'+'Overall Sentiment: '+overall  




with gr.Blocks(theme=gr.themes.Soft()) as window:
  gr.Markdown('## Market Sentiment Analysis')
  inp=gr.Textbox(label='Enter Ticker correctly',placeholder='For example:AAPL')
  btn=gr.Button('Search')
  display=gr.TextArea(label=' ')

  btn.click(fn=search,inputs=inp,outputs=display)
window.launch()