File size: 20,801 Bytes
1b80e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import folder_paths
import os
from io import BytesIO
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
from pathlib import Path
import sys
import torch
from huggingface_hub import snapshot_download, hf_hub_download
sys.path.append(os.path.join(str(Path(__file__).parent.parent),"libs"))
import joytag_models
try:
    from moondream_repo.moondream.moondream import Moondream
    moondream_loaded = True
except Exception as e:
    moondream_loaded = False
    print(f"Moondream error: You should probably run install_extra.bat (windows) or install transformers==4.36.2 in the enviroment.\n Also torch must be >= 2.1.0 (ERROR: {e})")
from PIL import Image
from transformers import CodeGenTokenizerFast as Tokenizer
#,AutoTokenizer, AutoModelForCausalLM
import numpy as np
import base64

models_base_path = os.path.join(folder_paths.models_dir, "GPTcheckpoints")
_choice = ["YES", "NO"]
_folders_whitelist = ["moondream","joytag"]#,"internlm"]


def env_or_def(env, default):
	if (env in os.environ):
		return os.environ[env]
	return default

def get_model_path(folder_list, model_name):
    for folder_path in folder_list:
        if folder_path.endswith(model_name):
            return folder_path
        
def get_model_list(models_base_path,supported_gpt_extensions):
    all_models = []
    try:
        for file in os.listdir(models_base_path):
            
            if os.path.isdir(os.path.join(models_base_path, file)):
                if  file in _folders_whitelist:
                    all_models.append(os.path.join(models_base_path, file))
            
            else:
                if file.endswith(tuple(supported_gpt_extensions)):
                    all_models.append(os.path.join(models_base_path, file))
    except:
        print(f"Path {models_base_path} not valid.")
    return all_models


def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

# Convert PIL to Tensor
def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)


def detect_device():
    """

    Detects the appropriate device to run on, and return the device and dtype.

    """
    if torch.cuda.is_available():
        return torch.device("cuda"), torch.float16
    elif torch.backends.mps.is_available():
        return torch.device("mps"), torch.float16
    else:
        return torch.device("cpu"), torch.float32


def load_joytag(ckpt_path,cpu=False):
    print("JOYTAG MODEL DETECTED")
    jt_config = os.path.join(models_base_path,"joytag","config.json")
    jt_readme= os.path.join(models_base_path,"joytag","README.md")
    jt_top_tags= os.path.join(models_base_path,"joytag","top_tags.txt")
    jt_model= os.path.join(models_base_path,"joytag","model.safetensors")


    if os.path.exists(jt_config)==False or os.path.exists(jt_readme)==False or os.path.exists(jt_top_tags)==False or os.path.exists(jt_model)==False:
        snapshot_download("fancyfeast/joytag",local_dir = os.path.join(models_base_path,"joytag"),local_dir_use_symlinks = False,)
    model = joytag_models.VisionModel.load_model(ckpt_path)
    model.eval()
    if cpu:
        return model.to('cpu')
    else:
        return model.to('cuda')

def run_joytag(images, prompt, max_tags, model_funct):
    with open(os.path.join(models_base_path,'joytag','top_tags.txt') , 'r') as f:
        top_tags = [line.strip() for line in f.readlines() if line.strip()]
        
    if images is None:
        raise ValueError("No image provided")
    top_tags_processed = []
    for image in images:
        _, scores = joytag_models.predict(image, model_funct, top_tags)
        top_tags_scores = sorted(scores.items(), key=lambda x: x[1], reverse=True)[:max_tags]
        # Extract the tags from the pairs
        top_tags_processed.append(', '.join([tag for tag, _ in top_tags_scores]))
    
    return top_tags_processed


def load_moondream(ckpt_path,cpu=False):

    dtype = torch.float32

    if cpu:
        device=torch.device("cpu")
    else:
        device = torch.device("cuda")
 

    config_json=os.path.join(os.path.join(models_base_path,"moondream"),'config.json')
    if os.path.exists(config_json)==False:
        hf_hub_download("vikhyatk/moondream1",
                                    local_dir=os.path.join(models_base_path,"moondream"),
                                    local_dir_use_symlinks=True,
                                    filename="config.json",
                                    endpoint='https://hf-mirror.com')
    
    model_safetensors=os.path.join(models_base_path,"moondream",'model.safetensors')
    if os.path.exists(model_safetensors)==False:
        hf_hub_download("vikhyatk/moondream1",
                                   local_dir=os.path.join(models_base_path,"moondream"),
                                   local_dir_use_symlinks=True,
                                   filename="model.safetensors",
                                   endpoint='https://hf-mirror.com')
    
    tokenizer_json=os.path.join(models_base_path,"moondream",'tokenizer.json')
    if os.path.exists(tokenizer_json)==False:
        hf_hub_download("vikhyatk/moondream1",
                                   local_dir=os.path.join(models_base_path,"moondream"),
                                   local_dir_use_symlinks=True,
                                   filename="tokenizer.json",
                                   endpoint='https://hf-mirror.com')
    
    if moondream_loaded:
        tokenizer = Tokenizer.from_pretrained(os.path.join(models_base_path,"moondream"))
        moondream = Moondream.from_pretrained(os.path.join(models_base_path,"moondream")).to(device=device, dtype=dtype)
        moondream.eval()
    else:
        tokenizer=None
        moondream=None





    return ([moondream, tokenizer])
    


def run_moondream(images, prompt, max_tags, model_funct):
    from PIL import Image
    moondream = model_funct[0]
    tokenizer = model_funct[1]
    list_descriptions = []
    for image in images:
        im=tensor2pil(image)

        image_embeds = moondream.encode_image(im)
        try:
            list_descriptions.append(moondream.answer_question(image_embeds, prompt,tokenizer))
        except ValueError:
            print("\n\n\n")
            raise ModuleNotFoundError("Please run install_extra.bat in custom_nodes/ComfyUI-N-Nodes folder to make sure to have the required verision of Transformers installed (4.36.2).")



    return list_descriptions

"""

def load_internlm(ckpt_path,cpu=False):

    

    

    

    local_dir=os.path.join(os.path.join(models_base_path,"internlm"))

    local_model_1 = os.path.join(local_dir,"pytorch_model-00001-of-00002.bin")

    local_model_2 = os.path.join(local_dir,"pytorch_model-00002-of-00002.bin")

        

    if os.path.exists(local_model_1) and os.path.exists(local_model_2):

        model_path = local_dir

    else:

        model_path = snapshot_download("internlm/internlm-xcomposer2-vl-7b", local_dir=local_dir, revision="f8e6ab8d7ff14dbd6b53335c93ff8377689040bf", local_dir_use_symlinks=False)



    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

    

    if torch.cuda.is_available() and cpu == False:

            

            model = AutoModelForCausalLM.from_pretrained(

                model_path, 

                torch_dtype="auto", 

                trust_remote_code=True,

                device_map="auto"

            ).eval()



    else:

        model = model.cpu().float().eval()

        

    model.tokenizer = tokenizer



    #device = device

    #dtype = dtype

    name = "internlm"

    #low_memory = low_memory

    

    return ([model, tokenizer])





def run_internlm(image, prompt, max_tags, model_funct):

    model = model_funct[0]

    tokenizer = model_funct[1]

    low_memory = True

    import tempfile

    image = Image.fromarray(np.clip(255. * image[0].cpu().numpy(),0,255).astype(np.uint8))

    #image = model.vis_processor(image)

    temp_dir = tempfile.mkdtemp()

    image_path = os.path.join(temp_dir,"input.jpg")

    image.save(image_path)

    #image = tensor2pil(image)

    if torch.cuda.is_available():

        with torch.cuda.amp.autocast(): 

            response, _ = model.chat(

                    query=prompt, 

                    image=image_path, 

                    tokenizer= tokenizer,

                    history=[], 

                    do_sample=True

                        )

        if low_memory:

            torch.cuda.empty_cache()

            print(f"Memory usage: {torch.cuda.memory_allocated() / 1024 ** 3:.2f} GB")

            model.to("cpu", dtype=torch.float16)

            print(f"Memory usage: {torch.cuda.memory_allocated() / 1024 ** 3:.2f} GB")

    else:

        response, _ = model.chat(

                query=prompt,

                image=image, 

                tokenizer= tokenizer,

                history=[], 

                do_sample=True

            )



    return response

 """   

     


def llava_inference(model_funct,prompt,images,max_tokens,stop_token,frequency_penalty,presence_penalty,repeat_penalty,temperature,top_k,top_p):
        list_descriptions = []
        for image in images:
            pil_image = tensor2pil(image)
            # Convert the PIL image to a bytes buffer
            buffer = BytesIO()
            pil_image.save(buffer, format="JPEG")  # You can change the format if needed
            image_bytes = buffer.getvalue()
            base64_string = f"data:image/jpeg;base64,{base64.b64encode(image_bytes).decode('utf-8')}"

            response = model_funct.create_chat_completion( max_tokens=max_tokens, stop=[stop_token], stream=False,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty ,repeat_penalty=repeat_penalty,
                                                        temperature=temperature,top_k=top_k,top_p=top_p,
                messages = [
                    {"role": "system", "content": "You are an assistant who perfectly describes images."},
                    {
                        "role": "user",
                        "content": [
                            {"type": "image_url", "image_url": {"url": base64_string}},
                            {"type" : "text", "text": prompt}
                        ]
                    }
                ]
            )
            list_descriptions.append(response['choices'][0]['message']['content'])
        return list_descriptions


if not os.path.isdir(models_base_path):
        os.mkdir(models_base_path)

#create folder if it doesn't exist
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","joytag")):
        os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","joytag"))

if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","moondream")):
        os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","moondream"))

"""#internlm

if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","internlm")):

        os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","internlm"))

"""
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava")):
        os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava"))

if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","models")):
        os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","models"))

if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","clips")):
        os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","clips"))


#folder_paths.folder_names_and_paths["GPTcheckpoints"] += (os.listdir(models_base_path),)



MODEL_FUNCTIONS = {
'joytag': run_joytag,
'moondream': run_moondream
}
MODEL_LOAD_FUNCTIONS = {
'joytag': load_joytag,
'moondream': load_moondream
}





supported_gpt_extensions = set(['.gguf'])
supported_clip_extensions = set(['.gguf','.bin'])
model_external_path = None

all_models = []

try:
    model_external_path = folder_paths.folder_names_and_paths["GPTcheckpoints"][0][0]
except:
    # no external folder
    pass



all_llava_models =  get_model_list(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","models"),supported_gpt_extensions)
all_llava_clips =  get_model_list(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","clips"),supported_clip_extensions)

all_models =  get_model_list(models_base_path,supported_gpt_extensions)
if model_external_path is not None:
    all_models += get_model_list(model_external_path,supported_gpt_extensions)
all_models += all_llava_models



#extract only names
all_models_names = [os.path.basename(model) for model in all_models]

all_clips_names = [os.path.basename(model) for model in all_llava_clips]



class GPTLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
              "ckpt_name": (all_models_names, ),
              "gpu_layers": ("INT", {"default": 27, "min": 0, "max": 100, "step": 1}),
              "n_threads": ("INT", {"default": 8, "min": 1, "max": 100, "step": 1}),
              "max_ctx": ("INT", {"default": 2048, "min": 300, "max": 100000, "step": 64}),
                             },
             "optional": {
             "llava_clip": ("LLAVA_CLIP", ),
           
             }}
    


    RETURN_TYPES = ("CUSTOM", )
    RETURN_NAMES = ("model",)
    FUNCTION = "load_gpt_checkpoint"
    DESCRIPTION = "Loads a GPT checkpoint (GGUF format)<img src='https://compote.slate.com/images/697b023b-64a5-49a0-8059-27b963453fb1.gif?crop=780%2C520%2Cx0%2Cy0&width=1280' />"

    CATEGORY = "N-Suite/loaders"
 
    def load_gpt_checkpoint(self, ckpt_name, gpu_layers,n_threads,max_ctx,llava_clip=None):
        ckpt_path = get_model_path(all_models,ckpt_name)
        llm = None
        #if is path
        if os.path.isfile(ckpt_path):
            print("GPT MODEL DETECTED")
            if "llava" in ckpt_path:
                if llava_clip is None:
                     raise ValueError("Please provide a llava clip")
                llm = Llama(model_path=ckpt_path,n_gpu_layers=gpu_layers,verbose=False,n_threads=n_threads, n_ctx=max_ctx, logits_all=True,chat_handler=llava_clip)
            else:
                llm = Llama(model_path=ckpt_path,n_gpu_layers=gpu_layers,verbose=False,n_threads=n_threads, n_ctx=max_ctx )
        else:
            if ckpt_name in MODEL_LOAD_FUNCTIONS :

                cpu = False if gpu_layers > 0 else True
                llm = MODEL_LOAD_FUNCTIONS[ckpt_name](ckpt_path,cpu)

        return ([llm, ckpt_name, ckpt_path],)


class GPTSampler:
    
    """

    A custom node for text generation using GPT



    Attributes

    ----------

    max_tokens (`int`): Maximum number of tokens in the generated text.

    temperature (`float`): Temperature parameter for controlling randomness (0.2 to 1.0).

    top_p (`float`): Top-p probability for nucleus sampling.

    logprobs (`int`|`None`): Number of log probabilities to output alongside the generated text.

    echo (`bool`): Whether to print the input prompt alongside the generated text.

    stop (`str`|`List[str]`|`None`): Tokens at which to stop generation.

    frequency_penalty (`float`): Frequency penalty for word repetition.

    presence_penalty (`float`): Presence penalty for word diversity.

    repeat_penalty (`float`): Penalty for repeating a prompt's output.

    top_k (`int`): Top-k tokens to consider during generation.

    stream (`bool`): Whether to generate the text in a streaming fashion.

    tfs_z (`float`): Temperature scaling factor for top frequent samples.

    model (`str`): The GPT model to use for text generation.

    """
    def __init__(self):
        self.temp_prompt = ""
        pass
    
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                
                "model": ("CUSTOM", {"default": ""}),
                "max_tokens": ("INT", {"default": 2048}),
                "temperature": ("FLOAT", {"default": 0.7, "min": 0.2, "max": 1.0}),
                "top_p": ("FLOAT", {"default": 0.5, "min": 0.1, "max": 1.0}),
                "logprobs": ("INT", {"default": 0}),
                "echo": (["enable", "disable"], {"default": "disable"}),
                "stop_token": ("STRING", {"default": "STOPTOKEN"}),
                "frequency_penalty": ("FLOAT", {"default": 0.0}),
                "presence_penalty": ("FLOAT", {"default": 0.0}),
                "repeat_penalty": ("FLOAT", {"default": 1.17647}),
                "top_k": ("INT", {"default": 40}),
                "tfs_z": ("FLOAT", {"default": 1.0}),
                "print_output": (["enable", "disable"], {"default": "disable"}),
                "cached": (_choice,{"default": "NO"} ),
                "prefix": ("STRING", {"default": "### Instruction: "}),
                "suffix": ("STRING", {"default": "### Response: "}),
                "max_tags": ("INT", {"default": 50}),
                
            },
             "optional": {
             "prompt": ("STRING",{"forceInput": True} ),
             "image": ("IMAGE",),
             }
        }

    RETURN_TYPES = ("STRING",)
    OUTPUT_IS_LIST = (True,)
    FUNCTION = "generate_text"
    CATEGORY = "N-Suite/Sampling"

    

    def generate_text(self, max_tokens, temperature, top_p, logprobs, echo, stop_token, frequency_penalty, presence_penalty, repeat_penalty, top_k, tfs_z, model,print_output,cached,prefix,suffix,max_tags,image=None,prompt=None):
        model_funct = model[0]
        model_name = model[1]
        model_path = model[2]


        if cached == "NO":
            if  model_name in MODEL_FUNCTIONS and os.path.isdir(model_path):
                cont = MODEL_FUNCTIONS[model_name](image, prompt, max_tags, model_funct)

            else:
                if "llava" in model_path:
                    cont = llava_inference(model_funct,prompt,image,max_tokens,stop_token,frequency_penalty,presence_penalty,repeat_penalty,temperature,top_k,top_p)
                    
                                
                else:
                    # Call your GPT generation function here using the provided parameters
                    composed_prompt = f"{prefix} {prompt} {suffix}"
                    cont =""
                    stream = model_funct( max_tokens=max_tokens, stop=[stop_token], stream=False,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty ,repeat_penalty=repeat_penalty,temperature=temperature,top_k=top_k,top_p=top_p,model=model_path,prompt=composed_prompt)
                    cont= [stream["choices"][0]["text"]]
                    self.temp_prompt  = cont
        else:
            cont = self.temp_prompt 
        #remove fist 30 characters of cont
        try:
            if print_output == "enable":
                print(f"Input: {prompt}\nGenerated Text: {cont}")
            return {"ui": {"text": cont}, "result": (cont,)}

        except:
            if print_output == "enable":
                print(f"Input: {prompt}\nGenerated Text: ")
            return {"ui": {"text": " "}, "result": (" ",)}


class LlavaClipLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {               
                "clip_name": (all_clips_names, ), 
                             }}
    
    RETURN_TYPES = ("LLAVA_CLIP", )
    RETURN_NAMES = ("llava_clip", )
    FUNCTION = "load_clip_checkpoint"

    CATEGORY = "N-Suite/LLava"
    def load_clip_checkpoint(self, clip_name):
        clip_path = get_model_path(all_llava_clips,clip_name)
        clip = Llava15ChatHandler(clip_model_path = clip_path, verbose=False)        
        return (clip, ) 


NODE_CLASS_MAPPINGS = {
    "GPT Loader Simple [n-suite]": GPTLoaderSimple,
    "GPT Sampler [n-suite]": GPTSampler,
    "Llava Clip Loader [n-suite]": LlavaClipLoader
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "GPT Loader Simple [n-suite]": "GPT Loader Simple [πŸ…-πŸ…’πŸ…€πŸ…˜πŸ…£πŸ…”]",
    "GPT Sampler [n-suite]": "GPT Text Sampler [πŸ…-πŸ…’πŸ…€πŸ…˜πŸ…£πŸ…”]",
    "Llava Clip Loader [n-suite]": "Llava Clip Loader [πŸ…-πŸ…’πŸ…€πŸ…˜πŸ…£πŸ…”]"

}