Spaces:
Sleeping
Sleeping
File size: 20,801 Bytes
1b80e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import folder_paths
import os
from io import BytesIO
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
from pathlib import Path
import sys
import torch
from huggingface_hub import snapshot_download, hf_hub_download
sys.path.append(os.path.join(str(Path(__file__).parent.parent),"libs"))
import joytag_models
try:
from moondream_repo.moondream.moondream import Moondream
moondream_loaded = True
except Exception as e:
moondream_loaded = False
print(f"Moondream error: You should probably run install_extra.bat (windows) or install transformers==4.36.2 in the enviroment.\n Also torch must be >= 2.1.0 (ERROR: {e})")
from PIL import Image
from transformers import CodeGenTokenizerFast as Tokenizer
#,AutoTokenizer, AutoModelForCausalLM
import numpy as np
import base64
models_base_path = os.path.join(folder_paths.models_dir, "GPTcheckpoints")
_choice = ["YES", "NO"]
_folders_whitelist = ["moondream","joytag"]#,"internlm"]
def env_or_def(env, default):
if (env in os.environ):
return os.environ[env]
return default
def get_model_path(folder_list, model_name):
for folder_path in folder_list:
if folder_path.endswith(model_name):
return folder_path
def get_model_list(models_base_path,supported_gpt_extensions):
all_models = []
try:
for file in os.listdir(models_base_path):
if os.path.isdir(os.path.join(models_base_path, file)):
if file in _folders_whitelist:
all_models.append(os.path.join(models_base_path, file))
else:
if file.endswith(tuple(supported_gpt_extensions)):
all_models.append(os.path.join(models_base_path, file))
except:
print(f"Path {models_base_path} not valid.")
return all_models
def tensor2pil(image):
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
# Convert PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def detect_device():
"""
Detects the appropriate device to run on, and return the device and dtype.
"""
if torch.cuda.is_available():
return torch.device("cuda"), torch.float16
elif torch.backends.mps.is_available():
return torch.device("mps"), torch.float16
else:
return torch.device("cpu"), torch.float32
def load_joytag(ckpt_path,cpu=False):
print("JOYTAG MODEL DETECTED")
jt_config = os.path.join(models_base_path,"joytag","config.json")
jt_readme= os.path.join(models_base_path,"joytag","README.md")
jt_top_tags= os.path.join(models_base_path,"joytag","top_tags.txt")
jt_model= os.path.join(models_base_path,"joytag","model.safetensors")
if os.path.exists(jt_config)==False or os.path.exists(jt_readme)==False or os.path.exists(jt_top_tags)==False or os.path.exists(jt_model)==False:
snapshot_download("fancyfeast/joytag",local_dir = os.path.join(models_base_path,"joytag"),local_dir_use_symlinks = False,)
model = joytag_models.VisionModel.load_model(ckpt_path)
model.eval()
if cpu:
return model.to('cpu')
else:
return model.to('cuda')
def run_joytag(images, prompt, max_tags, model_funct):
with open(os.path.join(models_base_path,'joytag','top_tags.txt') , 'r') as f:
top_tags = [line.strip() for line in f.readlines() if line.strip()]
if images is None:
raise ValueError("No image provided")
top_tags_processed = []
for image in images:
_, scores = joytag_models.predict(image, model_funct, top_tags)
top_tags_scores = sorted(scores.items(), key=lambda x: x[1], reverse=True)[:max_tags]
# Extract the tags from the pairs
top_tags_processed.append(', '.join([tag for tag, _ in top_tags_scores]))
return top_tags_processed
def load_moondream(ckpt_path,cpu=False):
dtype = torch.float32
if cpu:
device=torch.device("cpu")
else:
device = torch.device("cuda")
config_json=os.path.join(os.path.join(models_base_path,"moondream"),'config.json')
if os.path.exists(config_json)==False:
hf_hub_download("vikhyatk/moondream1",
local_dir=os.path.join(models_base_path,"moondream"),
local_dir_use_symlinks=True,
filename="config.json",
endpoint='https://hf-mirror.com')
model_safetensors=os.path.join(models_base_path,"moondream",'model.safetensors')
if os.path.exists(model_safetensors)==False:
hf_hub_download("vikhyatk/moondream1",
local_dir=os.path.join(models_base_path,"moondream"),
local_dir_use_symlinks=True,
filename="model.safetensors",
endpoint='https://hf-mirror.com')
tokenizer_json=os.path.join(models_base_path,"moondream",'tokenizer.json')
if os.path.exists(tokenizer_json)==False:
hf_hub_download("vikhyatk/moondream1",
local_dir=os.path.join(models_base_path,"moondream"),
local_dir_use_symlinks=True,
filename="tokenizer.json",
endpoint='https://hf-mirror.com')
if moondream_loaded:
tokenizer = Tokenizer.from_pretrained(os.path.join(models_base_path,"moondream"))
moondream = Moondream.from_pretrained(os.path.join(models_base_path,"moondream")).to(device=device, dtype=dtype)
moondream.eval()
else:
tokenizer=None
moondream=None
return ([moondream, tokenizer])
def run_moondream(images, prompt, max_tags, model_funct):
from PIL import Image
moondream = model_funct[0]
tokenizer = model_funct[1]
list_descriptions = []
for image in images:
im=tensor2pil(image)
image_embeds = moondream.encode_image(im)
try:
list_descriptions.append(moondream.answer_question(image_embeds, prompt,tokenizer))
except ValueError:
print("\n\n\n")
raise ModuleNotFoundError("Please run install_extra.bat in custom_nodes/ComfyUI-N-Nodes folder to make sure to have the required verision of Transformers installed (4.36.2).")
return list_descriptions
"""
def load_internlm(ckpt_path,cpu=False):
local_dir=os.path.join(os.path.join(models_base_path,"internlm"))
local_model_1 = os.path.join(local_dir,"pytorch_model-00001-of-00002.bin")
local_model_2 = os.path.join(local_dir,"pytorch_model-00002-of-00002.bin")
if os.path.exists(local_model_1) and os.path.exists(local_model_2):
model_path = local_dir
else:
model_path = snapshot_download("internlm/internlm-xcomposer2-vl-7b", local_dir=local_dir, revision="f8e6ab8d7ff14dbd6b53335c93ff8377689040bf", local_dir_use_symlinks=False)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if torch.cuda.is_available() and cpu == False:
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
trust_remote_code=True,
device_map="auto"
).eval()
else:
model = model.cpu().float().eval()
model.tokenizer = tokenizer
#device = device
#dtype = dtype
name = "internlm"
#low_memory = low_memory
return ([model, tokenizer])
def run_internlm(image, prompt, max_tags, model_funct):
model = model_funct[0]
tokenizer = model_funct[1]
low_memory = True
import tempfile
image = Image.fromarray(np.clip(255. * image[0].cpu().numpy(),0,255).astype(np.uint8))
#image = model.vis_processor(image)
temp_dir = tempfile.mkdtemp()
image_path = os.path.join(temp_dir,"input.jpg")
image.save(image_path)
#image = tensor2pil(image)
if torch.cuda.is_available():
with torch.cuda.amp.autocast():
response, _ = model.chat(
query=prompt,
image=image_path,
tokenizer= tokenizer,
history=[],
do_sample=True
)
if low_memory:
torch.cuda.empty_cache()
print(f"Memory usage: {torch.cuda.memory_allocated() / 1024 ** 3:.2f} GB")
model.to("cpu", dtype=torch.float16)
print(f"Memory usage: {torch.cuda.memory_allocated() / 1024 ** 3:.2f} GB")
else:
response, _ = model.chat(
query=prompt,
image=image,
tokenizer= tokenizer,
history=[],
do_sample=True
)
return response
"""
def llava_inference(model_funct,prompt,images,max_tokens,stop_token,frequency_penalty,presence_penalty,repeat_penalty,temperature,top_k,top_p):
list_descriptions = []
for image in images:
pil_image = tensor2pil(image)
# Convert the PIL image to a bytes buffer
buffer = BytesIO()
pil_image.save(buffer, format="JPEG") # You can change the format if needed
image_bytes = buffer.getvalue()
base64_string = f"data:image/jpeg;base64,{base64.b64encode(image_bytes).decode('utf-8')}"
response = model_funct.create_chat_completion( max_tokens=max_tokens, stop=[stop_token], stream=False,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty ,repeat_penalty=repeat_penalty,
temperature=temperature,top_k=top_k,top_p=top_p,
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": base64_string}},
{"type" : "text", "text": prompt}
]
}
]
)
list_descriptions.append(response['choices'][0]['message']['content'])
return list_descriptions
if not os.path.isdir(models_base_path):
os.mkdir(models_base_path)
#create folder if it doesn't exist
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","joytag")):
os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","joytag"))
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","moondream")):
os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","moondream"))
"""#internlm
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","internlm")):
os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","internlm"))
"""
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava")):
os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava"))
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","models")):
os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","models"))
if not os.path.isdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","clips")):
os.mkdir(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","clips"))
#folder_paths.folder_names_and_paths["GPTcheckpoints"] += (os.listdir(models_base_path),)
MODEL_FUNCTIONS = {
'joytag': run_joytag,
'moondream': run_moondream
}
MODEL_LOAD_FUNCTIONS = {
'joytag': load_joytag,
'moondream': load_moondream
}
supported_gpt_extensions = set(['.gguf'])
supported_clip_extensions = set(['.gguf','.bin'])
model_external_path = None
all_models = []
try:
model_external_path = folder_paths.folder_names_and_paths["GPTcheckpoints"][0][0]
except:
# no external folder
pass
all_llava_models = get_model_list(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","models"),supported_gpt_extensions)
all_llava_clips = get_model_list(os.path.join(folder_paths.models_dir, "GPTcheckpoints","llava","clips"),supported_clip_extensions)
all_models = get_model_list(models_base_path,supported_gpt_extensions)
if model_external_path is not None:
all_models += get_model_list(model_external_path,supported_gpt_extensions)
all_models += all_llava_models
#extract only names
all_models_names = [os.path.basename(model) for model in all_models]
all_clips_names = [os.path.basename(model) for model in all_llava_clips]
class GPTLoaderSimple:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ckpt_name": (all_models_names, ),
"gpu_layers": ("INT", {"default": 27, "min": 0, "max": 100, "step": 1}),
"n_threads": ("INT", {"default": 8, "min": 1, "max": 100, "step": 1}),
"max_ctx": ("INT", {"default": 2048, "min": 300, "max": 100000, "step": 64}),
},
"optional": {
"llava_clip": ("LLAVA_CLIP", ),
}}
RETURN_TYPES = ("CUSTOM", )
RETURN_NAMES = ("model",)
FUNCTION = "load_gpt_checkpoint"
DESCRIPTION = "Loads a GPT checkpoint (GGUF format)<img src='https://compote.slate.com/images/697b023b-64a5-49a0-8059-27b963453fb1.gif?crop=780%2C520%2Cx0%2Cy0&width=1280' />"
CATEGORY = "N-Suite/loaders"
def load_gpt_checkpoint(self, ckpt_name, gpu_layers,n_threads,max_ctx,llava_clip=None):
ckpt_path = get_model_path(all_models,ckpt_name)
llm = None
#if is path
if os.path.isfile(ckpt_path):
print("GPT MODEL DETECTED")
if "llava" in ckpt_path:
if llava_clip is None:
raise ValueError("Please provide a llava clip")
llm = Llama(model_path=ckpt_path,n_gpu_layers=gpu_layers,verbose=False,n_threads=n_threads, n_ctx=max_ctx, logits_all=True,chat_handler=llava_clip)
else:
llm = Llama(model_path=ckpt_path,n_gpu_layers=gpu_layers,verbose=False,n_threads=n_threads, n_ctx=max_ctx )
else:
if ckpt_name in MODEL_LOAD_FUNCTIONS :
cpu = False if gpu_layers > 0 else True
llm = MODEL_LOAD_FUNCTIONS[ckpt_name](ckpt_path,cpu)
return ([llm, ckpt_name, ckpt_path],)
class GPTSampler:
"""
A custom node for text generation using GPT
Attributes
----------
max_tokens (`int`): Maximum number of tokens in the generated text.
temperature (`float`): Temperature parameter for controlling randomness (0.2 to 1.0).
top_p (`float`): Top-p probability for nucleus sampling.
logprobs (`int`|`None`): Number of log probabilities to output alongside the generated text.
echo (`bool`): Whether to print the input prompt alongside the generated text.
stop (`str`|`List[str]`|`None`): Tokens at which to stop generation.
frequency_penalty (`float`): Frequency penalty for word repetition.
presence_penalty (`float`): Presence penalty for word diversity.
repeat_penalty (`float`): Penalty for repeating a prompt's output.
top_k (`int`): Top-k tokens to consider during generation.
stream (`bool`): Whether to generate the text in a streaming fashion.
tfs_z (`float`): Temperature scaling factor for top frequent samples.
model (`str`): The GPT model to use for text generation.
"""
def __init__(self):
self.temp_prompt = ""
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model": ("CUSTOM", {"default": ""}),
"max_tokens": ("INT", {"default": 2048}),
"temperature": ("FLOAT", {"default": 0.7, "min": 0.2, "max": 1.0}),
"top_p": ("FLOAT", {"default": 0.5, "min": 0.1, "max": 1.0}),
"logprobs": ("INT", {"default": 0}),
"echo": (["enable", "disable"], {"default": "disable"}),
"stop_token": ("STRING", {"default": "STOPTOKEN"}),
"frequency_penalty": ("FLOAT", {"default": 0.0}),
"presence_penalty": ("FLOAT", {"default": 0.0}),
"repeat_penalty": ("FLOAT", {"default": 1.17647}),
"top_k": ("INT", {"default": 40}),
"tfs_z": ("FLOAT", {"default": 1.0}),
"print_output": (["enable", "disable"], {"default": "disable"}),
"cached": (_choice,{"default": "NO"} ),
"prefix": ("STRING", {"default": "### Instruction: "}),
"suffix": ("STRING", {"default": "### Response: "}),
"max_tags": ("INT", {"default": 50}),
},
"optional": {
"prompt": ("STRING",{"forceInput": True} ),
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("STRING",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "generate_text"
CATEGORY = "N-Suite/Sampling"
def generate_text(self, max_tokens, temperature, top_p, logprobs, echo, stop_token, frequency_penalty, presence_penalty, repeat_penalty, top_k, tfs_z, model,print_output,cached,prefix,suffix,max_tags,image=None,prompt=None):
model_funct = model[0]
model_name = model[1]
model_path = model[2]
if cached == "NO":
if model_name in MODEL_FUNCTIONS and os.path.isdir(model_path):
cont = MODEL_FUNCTIONS[model_name](image, prompt, max_tags, model_funct)
else:
if "llava" in model_path:
cont = llava_inference(model_funct,prompt,image,max_tokens,stop_token,frequency_penalty,presence_penalty,repeat_penalty,temperature,top_k,top_p)
else:
# Call your GPT generation function here using the provided parameters
composed_prompt = f"{prefix} {prompt} {suffix}"
cont =""
stream = model_funct( max_tokens=max_tokens, stop=[stop_token], stream=False,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty ,repeat_penalty=repeat_penalty,temperature=temperature,top_k=top_k,top_p=top_p,model=model_path,prompt=composed_prompt)
cont= [stream["choices"][0]["text"]]
self.temp_prompt = cont
else:
cont = self.temp_prompt
#remove fist 30 characters of cont
try:
if print_output == "enable":
print(f"Input: {prompt}\nGenerated Text: {cont}")
return {"ui": {"text": cont}, "result": (cont,)}
except:
if print_output == "enable":
print(f"Input: {prompt}\nGenerated Text: ")
return {"ui": {"text": " "}, "result": (" ",)}
class LlavaClipLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip_name": (all_clips_names, ),
}}
RETURN_TYPES = ("LLAVA_CLIP", )
RETURN_NAMES = ("llava_clip", )
FUNCTION = "load_clip_checkpoint"
CATEGORY = "N-Suite/LLava"
def load_clip_checkpoint(self, clip_name):
clip_path = get_model_path(all_llava_clips,clip_name)
clip = Llava15ChatHandler(clip_model_path = clip_path, verbose=False)
return (clip, )
NODE_CLASS_MAPPINGS = {
"GPT Loader Simple [n-suite]": GPTLoaderSimple,
"GPT Sampler [n-suite]": GPTSampler,
"Llava Clip Loader [n-suite]": LlavaClipLoader
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"GPT Loader Simple [n-suite]": "GPT Loader Simple [π
-π
’π
€π
π
£π
]",
"GPT Sampler [n-suite]": "GPT Text Sampler [π
-π
’π
€π
π
£π
]",
"Llava Clip Loader [n-suite]": "Llava Clip Loader [π
-π
’π
€π
π
£π
]"
} |