Starlucas0201's picture
Update app.py
b8fc733 verified
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from comfy import model_management
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="Madespace/clip",
filename="google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
local_dir="models/clip"
)
hf_hub_download(
repo_id="ezioruan/inswapper_128.onnx",
filename="inswapper_128.onnx",
local_dir="models/insightface"
)
hf_hub_download(
repo_id="gmk123/GFPGAN",
filename="GFPGANv1.4.pth",
local_dir="models/facerestore_models"
)
hf_hub_download(
repo_id="gemasai/4x_NMKD-Superscale-SP_178000_G",
filename="4x_NMKD-Superscale-SP_178000_G.pth",
local_dir="models/upscale_models"
)
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from ut.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import NODE_CLASS_MAPPINGS
#TO be added to "model_loaders" as it loads a model
# downloadandloadcogvideomodel = NODE_CLASS_MAPPINGS[
# "DownloadAndLoadCogVideoModel"
# ]()
# downloadandloadcogvideomodel_1 = downloadandloadcogvideomodel.loadmodel(
# model="THUDM/CogVideoX-5b",
# precision="bf16",
# quantization="disabled",
# enable_sequential_cpu_offload=True,
# attention_mode="sdpa",
# load_device="main_device",
# )
# loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
# cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
# cliploader_20 = cliploader.load_clip(
# clip_name="t5/google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
# type="sd3",
# device="default",
# )
# emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
# cogvideotextencode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]()
# cogvideosampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]()
# cogvideodecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]()
# reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
# cr_upscale_image = NODE_CLASS_MAPPINGS["CR Upscale Image"]()
# vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
# #Add all the models that load a safetensors file
# model_loaders = [downloadandloadcogvideomodel_1, cliploader_20]
# # Check which models are valid and how to best load them
# valid_models = [
# getattr(loader[0], 'patcher', loader[0])
# for loader in model_loaders
# if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
# ]
# #Finally loads the models
# model_management.load_models_gpu(valid_models)
#Run ComfyUI Workflow
@spaces.GPU(duration=800)
def generate_video(positive_prompt, num_frames, input_image):
print("Positive Prompt:", positive_prompt)
print("Number of Frames:", num_frames)
print("Input Image:", input_image)
progress = gr.Progress(track_tqdm=True)
import_custom_nodes()
with torch.inference_mode():
downloadandloadcogvideomodel = NODE_CLASS_MAPPINGS[
"DownloadAndLoadCogVideoModel"
]()
downloadandloadcogvideomodel_1 = downloadandloadcogvideomodel.loadmodel(
model="THUDM/CogVideoX-5b",
precision="bf16",
quantization="disabled",
enable_sequential_cpu_offload=True,
attention_mode="sdpa",
load_device="main_device",
)
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
loadimage_8 = loadimage.load_image(image=input_image)
cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
cliploader_20 = cliploader.load_clip(
clip_name="google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
type="sd3",
device="default",
)
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
emptylatentimage_161 = emptylatentimage.generate(
width=480, #reduce this to avoid OOM error
height=480, #reduce this to avoid OOM error
batch_size=1 #reduce this to avoid OOM error
)
cogvideotextencode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]()
cogvideosampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]()
cogvideodecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]()
reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
cr_upscale_image = NODE_CLASS_MAPPINGS["CR Upscale Image"]()
vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
for q in range(1):
cogvideotextencode_30 = cogvideotextencode.process(
prompt=positive_prompt,
strength=1,
force_offload=True,
clip=get_value_at_index(cliploader_20, 0),
)
cogvideotextencode_31 = cogvideotextencode.process(
prompt='',
strength=1,
force_offload=True,
clip=get_value_at_index(cogvideotextencode_30, 1),
)
cogvideosampler_155 = cogvideosampler.process(
num_frames=num_frames,
steps=30, #reduce this to avoid OOM error
cfg=6,
seed=random.randint(1, 2**64),
scheduler="CogVideoXDDIM",
denoise_strength=1,
model=get_value_at_index(downloadandloadcogvideomodel_1, 0),
positive=get_value_at_index(cogvideotextencode_30, 0),
negative=get_value_at_index(cogvideotextencode_31, 0),
samples=get_value_at_index(emptylatentimage_161, 0),
)
cogvideodecode_11 = cogvideodecode.decode(
enable_vae_tiling=False,
tile_sample_min_height=240,#reduce this to avoid OOM error
tile_sample_min_width=240,#reduce this to avoid OOM error
tile_overlap_factor_height=0.2,
tile_overlap_factor_width=0.2,
auto_tile_size=True,
vae=get_value_at_index(downloadandloadcogvideomodel_1, 1),
samples=get_value_at_index(cogvideosampler_155, 0),
)
reactorfaceswap_3 = reactorfaceswap.execute(
enabled=True,
swap_model="inswapper_128.onnx",
facedetection="retinaface_resnet50",
face_restore_model="GFPGANv1.4.pth",
face_restore_visibility=1,
codeformer_weight=0.75,
detect_gender_input="no",
detect_gender_source="no",
input_faces_index="0",
source_faces_index="0",
console_log_level=1,
input_image=get_value_at_index(cogvideodecode_11, 0),
source_image=get_value_at_index(loadimage_8, 0),
)
cr_upscale_image_151 = cr_upscale_image.upscale(
upscale_model="4x_NMKD-Superscale-SP_178000_G.pth",
mode="rescale",
rescale_factor=4,
resize_width=720,
resampling_method="lanczos",
supersample="true",
rounding_modulus=16,
image=get_value_at_index(reactorfaceswap_3, 0),
)
vhs_videocombine_154 = vhs_videocombine.combine_video(
frame_rate=8,
loop_count=0,
filename_prefix="AnimateDiff",
format="video/h264-mp4",
pix_fmt="yuv420p",
crf=19,
save_metadata=True,
trim_to_audio=False,
pingpong=True,
save_output=True,
images=get_value_at_index(cr_upscale_image_151, 0),
unique_id=7214086815220268849,
)
video_path = f"output/{vhs_videocombine_154['ui']['gifs'][0]['filename']}"
image_path = f"output/{vhs_videocombine_154['result'][0][1][0].split('/')[-1]}"
print(vhs_videocombine_154)
print(video_path, image_path)
return video_path, image_path
if __name__ == "__main__":
with gr.Blocks() as app:
with gr.Row():
positive_prompt = gr.Textbox(label="Positive Prompt", value="A young Asian man with shoulder-length black hair, wearing a stylish black outfit, playing an acoustic guitar on a dimly lit stage. His full face is visible, showing a calm and focused expression as he strums the guitar. A microphone stand is positioned near him, and a music stand with sheet music is in front of him. The stage lighting casts a soft, warm glow on his face, and the background features an intimate live music setting with visible metal beams and soft blue ambient lighting. The scene captures the artistic mood of a live performance, emphasizing the details of the guitar, the musician’s fingers on the strings, and the relaxed yet passionate vibe of the moment.", lines=2)
with gr.Row():
num_frames = gr.Number(label="Number of Frames", value=10)
with gr.Row():
input_image = gr.Image(label="Input Image", type="filepath")
submit = gr.Button("Submit")
output_video = gr.Video(label="Output Video")
output_image = gr.Image(label="Output Image")
submit.click(
fn=generate_video,
inputs=[positive_prompt, num_frames, input_image],
outputs=[output_video, output_image]
)
app.launch(share=True,show_error=True)