Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import sys | |
import torch | |
import argparse | |
from PIL import Image, ImageOps | |
import folder_paths | |
import numpy as np | |
from tqdm import tqdm | |
from torch.nn import functional as F | |
import _thread | |
from queue import Queue, Empty | |
from pathlib import Path | |
sys.path.append(os.path.join(str(Path(__file__).parent.parent),"libs","rifle")) | |
from model.pytorch_msssim import ssim_matlab | |
interpolation_temp_input_folder = os.path.join(folder_paths.get_temp_directory(),"n-suite","interpolation_input") | |
interpolation_temp_output_folder = os.path.join(folder_paths.get_temp_directory(),"n-suite","interpolation_output") | |
try: | |
os.makedirs(interpolation_temp_input_folder) | |
except: | |
pass | |
try: | |
os.makedirs(interpolation_temp_output_folder) | |
except: | |
pass | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
scale=1 | |
torch.set_grad_enabled(False) | |
if torch.cuda.is_available(): | |
torch.backends.cudnn.enabled = True | |
try: | |
from train_log.RIFE_HDv3 import Model | |
except: | |
print("Please download our model from model list") | |
model = Model() | |
if not hasattr(model, 'version'): | |
model.version = 0 | |
model_folder= os.path.join(folder_paths.folder_names_and_paths["custom_nodes"][0][0],'ComfyUI-N-Nodes','libs','rifle','train_log') | |
output_frames = [] | |
def clear_write_buffer(user_args, write_buffer,output_folder): | |
cnt = 0 | |
while True: | |
item = write_buffer.get() | |
if item is None: | |
break | |
cv2.imwrite(os.path.join(output_folder, '{:0>7d}.png'.format(cnt)), item[:, :, ::-1]) | |
cnt += 1 | |
def build_read_buffer(img, read_buffer, videogen): | |
try: | |
for frame in videogen: | |
if not img is None: | |
frame = cv2.imread(os.path.join(img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | |
read_buffer.put(frame) | |
except: | |
pass | |
read_buffer.put(None) | |
def make_inference(I0, I1, n): | |
global model | |
if model.version >= 3.9: | |
res = [] | |
for i in range(n): | |
res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), scale)) | |
return res | |
else: | |
middle = model.inference(I0, I1, scale) | |
if n == 1: | |
return [middle] | |
first_half = make_inference(I0, middle, n=n//2) | |
second_half = make_inference(middle, I1, n=n//2) | |
if n%2: | |
return [*first_half, middle, *second_half] | |
else: | |
return [*first_half, *second_half] | |
def get_output_filename(input_file_path, output_folder, file_extension,suffix="") : | |
existing_files = [f for f in os.listdir(output_folder)] | |
max_progressive = 0 | |
for filename in existing_files: | |
parts_ext = filename.split(".") | |
parts = parts_ext[0] | |
if len(parts) > 2 and parts.isdigit(): | |
progressive = int(parts) | |
max_progressive = max(max_progressive, progressive) | |
new_progressive = max_progressive + 1 | |
new_filename = f"{new_progressive:07d}{suffix}{file_extension}" | |
return os.path.join(output_folder, new_filename), new_filename | |
def image_preprocessing(i): | |
i = ImageOps.exif_transpose(i) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
return image | |
_choice = ["YES", "NO"] | |
_range = ["Fixed", "Random"] | |
class FrameInterpolator: | |
def __init__(self): | |
model.load_model(model_folder, -1) | |
print("Loaded 3.x/4.x HD model.") | |
model.eval() | |
model.device() | |
self.type = "output" | |
def INPUT_TYPES(s): | |
#clear directory | |
try: | |
for file in os.listdir(interpolation_temp_input_folder): | |
os.remove(os.path.join(interpolation_temp_input_folder,file)) | |
for file in os.listdir(interpolation_temp_output_folder): | |
os.remove(os.path.join(interpolation_temp_output_folder,file)) | |
except: | |
pass | |
return {"required": | |
{"images": ("IMAGE", ), | |
"METADATA": ("STRING", {"default": "", "forceInput": True} ), | |
"multiplier": ("INT", {"default": 2, "min": 1, "step": 1}), | |
}, | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_video" | |
OUTPUT_NODE = True | |
CATEGORY = "N-Suite/Video" | |
RETURN_TYPES = ("IMAGE","STRING",) | |
OUTPUT_IS_LIST = (True, False, ) | |
RETURN_NAMES = ("IMAGES","METADATA",) | |
FUNCTION = "interpolate" | |
def interpolate(self,images,multiplier,METADATA): | |
fps = METADATA[0]*multiplier | |
frame_number = METADATA[1] | |
video_name = METADATA[2] | |
for image in images: | |
full_input_temp_frame_folder,file = get_output_filename("", interpolation_temp_input_folder, ".png") | |
file_name = file | |
i = 255. * image.cpu().numpy() | |
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) | |
metadata = None | |
#file = f"frame_{counter:05}_.png" | |
img.save(full_input_temp_frame_folder, pnginfo=metadata, compress_level=0) | |
try: | |
file_name_number = int(file.split(".")[0]) | |
except: | |
file_name_number = 0 | |
image_list = [] | |
if(file_name_number >= frame_number): | |
videogen = [] | |
for f in os.listdir(interpolation_temp_input_folder): | |
if 'png' in f: | |
videogen.append(f) | |
tot_frame = len(videogen) | |
videogen.sort(key= lambda x:int(x[:-4])) | |
lastframe = cv2.imread(os.path.join(interpolation_temp_input_folder, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() | |
videogen = videogen[1:] | |
h, w, _ = lastframe.shape | |
tmp = max(128, int(128 / scale)) | |
ph = ((h - 1) // tmp + 1) * tmp | |
pw = ((w - 1) // tmp + 1) * tmp | |
padding = (0, pw - w, 0, ph - h) | |
pbar = tqdm(total=tot_frame) | |
write_buffer = Queue(maxsize=500) | |
read_buffer = Queue(maxsize=500) | |
_thread.start_new_thread(build_read_buffer, (interpolation_temp_input_folder, read_buffer, videogen)) | |
_thread.start_new_thread(clear_write_buffer, (interpolation_temp_input_folder, write_buffer, interpolation_temp_output_folder)) | |
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = F.pad(I1, padding) | |
temp = None # save lastframe when processing static frame | |
while True: | |
if temp is not None: | |
frame = temp | |
temp = None | |
else: | |
frame = read_buffer.get() | |
if frame is None: | |
break | |
I0 = I1 | |
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = F.pad(I1, padding) | |
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) | |
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
break_flag = False | |
if ssim > 0.996: | |
frame = read_buffer.get() # read a new frame | |
if frame is None: | |
break_flag = True | |
frame = lastframe | |
else: | |
temp = frame | |
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. | |
I1 = F.pad(I1, padding) | |
I1 = model.inference(I0, I1, scale) | |
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) | |
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) | |
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w] | |
if ssim < 0.2: | |
output = [] | |
for i in range(multiplier - 1): | |
output.append(I0) | |
else: | |
output = make_inference(I0, I1, multiplier-1) | |
write_buffer.put(lastframe) | |
for mid in output: | |
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) | |
write_buffer.put(mid[:h, :w]) | |
pbar.update(1) | |
lastframe = frame | |
if break_flag: | |
break | |
write_buffer.put(lastframe) | |
import time | |
while(not write_buffer.empty()): | |
time.sleep(0.1) | |
pbar.close() | |
METADATA = [fps, len(os.listdir(interpolation_temp_output_folder)),video_name] | |
images = [os.path.join(interpolation_temp_output_folder, filename) for filename in os.listdir(interpolation_temp_output_folder) if filename.endswith(".png")] | |
images.sort(key=lambda f: int(''.join(filter(str.isdigit, f)))) | |
for image in images: | |
image_list.append(image_preprocessing(Image.open(image))) | |
return ( image_list,METADATA) | |
# NOTE: names should be globally unique | |
NODE_CLASS_MAPPINGS = { | |
"FrameInterpolator [n-suite]": FrameInterpolator, | |
} | |
# A dictionary that contains the friendly/humanly readable titles for the nodes | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"FrameInterpolator [n-suite]": "FrameInterpolator [π -π ’π €π π £π ]" | |
} | |