import torch import folder_paths from PIL import Image, ImageOps import numpy as np import safetensors.torch import hashlib import os import cv2 import os import imageio import shutil from moviepy.editor import VideoFileClip, AudioFileClip import random import math import json from comfy.cli_args import args import time import concurrent.futures import skbuild YELLOW = '\33[33m' END = '\33[0m' # Brutally copied from comfy_extras/nodes_rebatch.py and modified class LatentRebatch: @staticmethod def get_batch(latents, list_ind, offset): '''prepare a batch out of the list of latents''' samples = latents[list_ind]['samples'] shape = samples.shape mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu') if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]: torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear") if mask.shape[0] < samples.shape[0]: mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] if 'batch_index' in latents[list_ind]: batch_inds = latents[list_ind]['batch_index'] else: batch_inds = [x+offset for x in range(shape[0])] return samples, mask, batch_inds @staticmethod def get_slices(indexable, num, batch_size): '''divides an indexable object into num slices of length batch_size, and a remainder''' slices = [] for i in range(num): slices.append(indexable[i*batch_size:(i+1)*batch_size]) if num * batch_size < len(indexable): return slices, indexable[num * batch_size:] else: return slices, None @staticmethod def slice_batch(batch, num, batch_size): result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch] return list(zip(*result)) @staticmethod def cat_batch(batch1, batch2): if batch1[0] is None: return batch2 result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)] return result def rebatch(self, latents, batch_size): batch_size = batch_size[0] output_list = [] current_batch = (None, None, None) processed = 0 for i in range(len(latents)): # fetch new entry of list #samples, masks, indices = self.get_batch(latents, i) next_batch = self.get_batch(latents, i, processed) processed += len(next_batch[2]) # set to current if current is None if current_batch[0] is None: current_batch = next_batch # add previous to list if dimensions do not match elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]: sliced, _ = self.slice_batch(current_batch, 1, batch_size) output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]}) current_batch = next_batch # cat if everything checks out else: current_batch = self.cat_batch(current_batch, next_batch) # add to list if dimensions gone above target batch size if current_batch[0].shape[0] > batch_size: num = current_batch[0].shape[0] // batch_size sliced, remainder = self.slice_batch(current_batch, num, batch_size) for i in range(num): output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]}) current_batch = remainder #add remainder if current_batch[0] is not None: sliced, _ = self.slice_batch(current_batch, 1, batch_size) output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]}) #get rid of empty masks for s in output_list: if s['noise_mask'].mean() == 1.0: del s['noise_mask'] return output_list input_dir = os.path.join(folder_paths.get_input_directory(),"n-suite") output_dir = os.path.join(folder_paths.get_output_directory(),"n-suite","frames_out") temp_output_dir = os.path.join(folder_paths.get_temp_directory(),"n-suite","frames_out") frames_output_dir = os.path.join(folder_paths.get_temp_directory(),"n-suite","frames") videos_output_dir = os.path.join(folder_paths.get_output_directory(),"n-suite","videos") audios_output_temp_dir = os.path.join(folder_paths.get_temp_directory(),"audio.mp3") videos_output_temp_dir = os.path.join(folder_paths.get_temp_directory(),"video.mp4") video_preview_output_temp_dir = os.path.join(folder_paths.get_output_directory(),"n-suite","videos") _resize_type = ["none","width", "height"] _framerate = ["original","half", "quarter"] _choice = ["Yes", "No"] try: os.makedirs(input_dir) except: pass try: os.makedirs(output_dir) except: pass try: os.makedirs(temp_output_dir) except: pass try: os.makedirs(videos_output_dir) except: pass try: os.makedirs(frames_output_dir) except: pass try: os.makedirs(folder_paths.get_temp_directory()) except: pass def calc_resize_image(input_path, target_size, resize_by): image = cv2.imread(input_path) height, width = image.shape[:2] if resize_by == 'width': new_width = target_size new_height = int(height * (target_size / width)) elif resize_by == 'height': new_height = target_size new_width = int(width * (target_size / height)) else: new_height = height new_width = width return new_width, new_height def calc_resize_image_from_ram(input_frame, target_size, resize_by): height, width = input_frame.shape[:2] if resize_by == 'width': new_width = target_size new_height = int(height * (target_size / width)) elif resize_by == 'height': new_height = target_size new_width = int(width * (target_size / height)) else: new_height = height new_width = width return new_width, new_height def resize_image(input_path, new_width, new_height): image = cv2.imread(input_path) height, width = image.shape[:2] if height != new_height or width != new_width: resized_image = cv2.resize(image, (new_width, new_height)) else: resized_image = image pil_image = Image.fromarray(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)) return pil_image def resize_image_from_ram(image, new_width, new_height): height, width = image.shape[:2] if height != new_height or width != new_width: resized_image = cv2.resize(image, (new_width, new_height)) else: resized_image = image pil_image = Image.fromarray(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)) return pil_image def extract_frames_from_video(video_path, output_folder=None, target_fps=30, use_ram=True): frames = [] list_files = [] cap = cv2.VideoCapture(video_path) frame_count = 0 # Ottieni il framerate originale del video original_fps = int(cap.get(cv2.CAP_PROP_FPS)) # Calcola il rapporto per ridurre il framerate frame_skip_ratio = original_fps // target_fps real_frame_count = 0 if not use_ram: if output_folder is None: raise ValueError("output_folder must be specified if use_ram is False") if output_folder is not None: os.makedirs(output_folder, exist_ok=True) while True: ret, frame = cap.read() if not ret: break frame_count += 1 # Estrai solo ogni "frame_skip_ratio"-esimo fotogramma if frame_count % frame_skip_ratio == 0: if use_ram: frames.append(frame) else: frame_filename = os.path.join(output_folder, f"{frame_count:07d}.png") list_files.append(frame_filename) cv2.imwrite(frame_filename, frame) real_frame_count += 1 cap.release() print(f"{real_frame_count} frames have been extracted from the video") if use_ram: return frames else: return list_files def extract_frames_from_gif(gif_path, output_folder): list_files = [] os.makedirs(output_folder, exist_ok=True) gif_frames = imageio.mimread(gif_path, memtest=False) frame_count = 0 for frame in gif_frames: frame_count += 1 frame_filename = os.path.join(output_folder, f"{frame_count:07d}.png") list_files.append(frame_filename) cv2.imwrite(frame_filename, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) print(f"{frame_count} frames have been extracted from the GIF and saved in {output_folder}") return list_files def get_output_filename(input_file_path, output_folder, file_extension,suffix="") : existing_files = [f for f in os.listdir(output_folder)] max_progressive = 0 for filename in existing_files: parts_ext = filename.split(".") parts = parts_ext[0] if len(parts) > 2 and parts.isdigit(): progressive = int(parts) max_progressive = max(max_progressive, progressive) new_progressive = max_progressive + 1 new_filename = f"{new_progressive:07d}{suffix}{file_extension}" return os.path.join(output_folder, new_filename), new_filename def get_output_filename_video(input_file_path, output_folder, file_extension,suffix="") : input_filename = os.path.basename(input_file_path) input_filename_without_extension = os.path.splitext(input_filename)[0] existing_files = [f for f in os.listdir(output_folder) if f.startswith(input_filename_without_extension)] max_progressive = 0 for filename in existing_files: parts_ext = filename.split(".") parts = parts_ext[0].split("_") if len(parts) == 2 and parts[1].isdigit(): progressive = int(parts[1]) max_progressive = max(max_progressive, progressive) new_progressive = max_progressive + 1 new_filename = f"{input_filename_without_extension}_{new_progressive:02d}{suffix}{file_extension}" return os.path.join(output_folder, new_filename), new_filename def image_preprocessing(i): i = ImageOps.exif_transpose(i) image = i.convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image)[None,] return image def create_video_from_frames(frame_folder, output_video, frame_rate = 30.0): frame_filenames = [os.path.join(frame_folder, filename) for filename in os.listdir(frame_folder) if filename.endswith(".png")] frame_filenames.sort(key=lambda f: int(''.join(filter(str.isdigit, f)))) first_frame = cv2.imread(frame_filenames[0]) height, width, layers = first_frame.shape fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_video, fourcc, frame_rate, (width, height)) for frame_filename in frame_filenames: frame = cv2.imread(frame_filename) out.write(frame) out.release() print(f"Frames have been successfully reassembled into {output_video}") def create_gif_from_frames(frame_folder, output_gif): frame_filenames = [os.path.join(frame_folder, filename) for filename in os.listdir(frame_folder) if filename.endswith(".png")] frame_filenames.sort() frames = [imageio.imread(frame_filename) for frame_filename in frame_filenames] # imageio imageio.mimsave(output_gif, frames, duration=0.1) print(f"Frames have been successfully assembled into {output_gif}") temp_dir= folder_paths.temp_directory class LoadVideoAdvanced: def __init__(self): pass @classmethod def INPUT_TYPES(s): files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))] return {"required": {"video": (sorted(files), ), "local_url": ("STRING", {"default": ""} ), "framerate": (_framerate, {"default": "original"} ), "resize_by": (_resize_type,{"default": "none"} ), "size": ("INT", {"default": 512, "min": 512, "step": 64}), "images_limit": ("INT", {"default": 0, "min": 0, "step": 1}), "batch_size": ("INT", {"default": 0, "min": 0, "step": 1}), "starting_frame": ("INT", {"default": 0, "min": 0, "step": 1}), "autoplay":("BOOLEAN",{"default": True} ), "use_ram": ("BOOLEAN", {"default": False}), },} RETURN_TYPES = ("IMAGE","LATENT","STRING","INT","INT","INT","INT",) OUTPUT_IS_LIST = (True, True, False, False,False,False,False, ) RETURN_NAMES = ("IMAGES","EMPTY LATENTS","METADATA","WIDTH","HEIGHT","META_FPS","META_N_FRAMES") CATEGORY = "N-Suite/Video" FUNCTION = "encode" TYPE="N-Suite" @staticmethod def vae_encode_crop_pixels(pixels): x = (pixels.shape[1] // 8) * 8 y = (pixels.shape[2] // 8) * 8 if pixels.shape[1] != x or pixels.shape[2] != y: x_offset = (pixels.shape[1] % 8) // 2 y_offset = (pixels.shape[2] % 8) // 2 pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :] return pixels def load_video(self, video, framerate, local_url, use_ram): file_path = folder_paths.get_annotated_filepath(os.path.join("n-suite", video)) cap = cv2.VideoCapture(file_path) # Check if the video was opened successfully if not cap.isOpened(): print("Unable to open the video.") else: # Get the FPS of the video fps = int(cap.get(cv2.CAP_PROP_FPS)) print(f"The video has {fps} frames per second.") try: shutil.rmtree(os.path.join(temp_output_dir, video.split(".")[0])) except: print("Video Path already deleted") full_temp_output_dir = os.path.join(temp_output_dir, video.split(".")[0]) # Set new framerate if "half" in framerate: fps = fps // 2 print(f"The video has been reduced to {fps} frames per second.") elif "quarter" in framerate: fps = fps // 4 print(f"The video has been reduced to {fps} frames per second.") file_extension = os.path.splitext(file_path)[1].lower() if file_extension in [".mp4", ".webm"]: list_files = extract_frames_from_video(file_path, full_temp_output_dir, fps, use_ram) audio_clip = VideoFileClip(file_path).audio try: # Save audio audio_clip.write_audiofile(os.path.join(temp_output_dir, video.split(".")[0], "audio.mp3")) except: print("Could not save audio") pass elif file_extension == ".gif": list_files = extract_frames_from_gif(file_path, output_dir) else: print("Format not supported. Please provide an MP4 or GIF file.") return list_files, fps def generate_latent(self, width, height, batch_size=1): latent = torch.zeros([batch_size, 4, height // 8, width // 8]) return {"samples": latent} def process_image(self, args): image, width, height, use_ram = args # Funzione per ridimensionare e pre-elaborare un'immagine if use_ram: image = resize_image_from_ram(image, width, height) else: image = resize_image(image, width, height) image = image_preprocessing(image) return torch.tensor(image) def encode(self, video, framerate, local_url, resize_by, size, images_limit, batch_size, starting_frame, autoplay, use_ram): metadata = [] FRAMES, fps = self.load_video(video, framerate, local_url, use_ram) max_frames = len(FRAMES) if images_limit > 0 and starting_frame > 0: images_limit += starting_frame print(f"images_limit {images_limit}") if starting_frame > max_frames: starting_frame = max_frames - 1 print(f"WARNING: The starting frame is greater than the number of frames in the video. Only the last frame of the video will be used ({starting_frame}).") if images_limit > max_frames: images_limit = max_frames print(f"WARNING: The number of images to extract is greater than the number of frames in the video. Images_limit has been reduced to the number of frames ({images_limit}).") if batch_size > max_frames: print(f"WARNING: The batch size is greater than the number of frames requested. Batch size has been reduced.") batch_size = max_frames if images_limit != 0 and batch_size > images_limit: print(f"WARNING: The batch size is greater than the number of frames requested. Batch size has been reduced to the number of images_limit.") batch_size = images_limit pool_size = 5 i_list = [] final_count_frame = 0 with concurrent.futures.ThreadPoolExecutor() as executor: futures = [] if use_ram: width, height = calc_resize_image_from_ram(FRAMES[0], size, resize_by) else: width, height = calc_resize_image(FRAMES[0], size, resize_by) for batch_start in range(0, len(FRAMES), pool_size): batch_images = FRAMES[batch_start:batch_start + pool_size] if images_limit != 0 or starting_frame != 0: try: os.remove(os.path.join(temp_output_dir, video.split(".")[0], "audio.mp3")) except: pass for idx, image in enumerate(batch_images): if final_count_frame >= starting_frame and (final_count_frame < images_limit or images_limit == 0): args = (image, width, height, use_ram) futures.append(executor.submit(self.process_image, args)) final_count_frame += 1 concurrent.futures.wait(futures) for future in futures: batch_i_tensors = future.result() i_list.extend(batch_i_tensors) i_tensor = torch.stack(i_list, dim=0) if images_limit != 0 or starting_frame != 0: b_size = final_count_frame else: b_size = len(FRAMES) latent = self.generate_latent(width, height, batch_size=b_size) metadata.append(fps) metadata.append(b_size) try: metadata.append(video.split(".")[0]) except: print("No video name") if batch_size != 0: rebatcher = LatentRebatch() rebatched_latent = rebatcher.rebatch([latent], [batch_size]) n_chunks = b_size // batch_size i_tensor_batches = torch.chunk(i_tensor, n_chunks, dim=0) return i_tensor_batches, rebatched_latent, metadata, width, height return [i_tensor], [latent], metadata, width, height, fps, b_size class SaveVideo: def __init__(self): self.type = "output" @classmethod def INPUT_TYPES(s): try: shutil.rmtree(frames_output_dir) os.mkdir(frames_output_dir) except: pass #print(f"Temporary folder {frames_output_dir} has been emptied.") return {"required": {"images": ("IMAGE", ), "METADATA": ("STRING", {"default": "", "forceInput": True} ), "SaveVideo": ("BOOLEAN",{"default": False} ), "SaveFrames": ("BOOLEAN",{"default": False} ), "filename_prefix": ("STRING",{"default": "video"} ), "CompressionLevel": ("INT", {"default": 2, "min": 0, "max":9, "step": 1}), }, "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } RETURN_TYPES = () FUNCTION = "save_video" OUTPUT_NODE = True CATEGORY = "N-Suite/Video" def save_video(self, images,METADATA,SaveVideo,SaveFrames,filename_prefix, CompressionLevel, prompt=None, extra_pnginfo=None): self.video_file_path,self.video_filename = get_output_filename_video(filename_prefix, videos_output_dir, ".mp4") fps = METADATA[0] frame_number = METADATA[1] video_filename_original = METADATA[2] #full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path("", frames_output_dir, images[0].shape[1], images[0].shape[0]) results = list() for image in images: full_output_folder,file = get_output_filename("", frames_output_dir, ".png") file_name = file i = 255. * image.cpu().numpy() img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) metadata = None #file = f"frame_{counter:05}_.png" img.save(full_output_folder, pnginfo=metadata, compress_level=CompressionLevel) results.append({ "filename": file, "subfolder": "frames", "type": self.type }) try: file_name_number = int(file.split(".")[0]) except: file_name_number = 0 if(file_name_number >= frame_number): create_video_from_frames(frames_output_dir, videos_output_temp_dir,frame_rate=fps) video_clip = VideoFileClip(videos_output_temp_dir) try: audio_clip = AudioFileClip(os.path.join(temp_output_dir,video_filename_original,"audio.mp3")) video_clip = video_clip.set_audio(audio_clip) except: print("No audio found") pass if SaveFrames == True: #copy frames_output_dir to self.video_file_path/self.video_filename frame_folder=os.path.join(videos_output_dir,self.video_filename.split(".")[0]) shutil.copytree(frames_output_dir, frame_folder) if SaveVideo == True: video_clip.write_videofile(self.video_file_path) file_name = self.video_filename else: #delete all temporary files that start with video_preview for file in os.listdir(video_preview_output_temp_dir): if file.startswith("video_preview"): os.remove(os.path.join(video_preview_output_temp_dir,file)) #random number suffix = str(random.randint(1,100000)) file_name = f"video_preview_{suffix}.mp4" video_clip.write_videofile(os.path.join(video_preview_output_temp_dir,file_name)) return {"ui": {"text": [file_name],}} class LoadFramesFromFolder: def __init__(self): pass @classmethod def INPUT_TYPES(s): return {"required": { "folder":("STRING", {"default": ""} ), "fps":("INT", {"default": 30}) }} RETURN_TYPES = ("IMAGE","STRING","INT","INT","INT","STRING","STRING",) RETURN_NAMES = ("IMAGES","METADATA","MAX WIDTH","MAX HEIGHT","FRAME COUNT","PATH","IMAGE LIST") FUNCTION = "load_images" OUTPUT_IS_LIST = (True,False,False,False,False,False,False,) CATEGORY = "N-Suite/Video" def load_images(self, folder,fps): image_list = [] image_names = [] max_width = 0 max_height = 0 frame_count = 0 METADATA = [fps, len(os.listdir(folder)),"load"] images = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith(".png") or filename.endswith(".jpg")] images.sort(key=lambda f: int(''.join(filter(str.isdigit, f)))) for image_path in images: #get image name image_names.append(image_path.split("/")[-1]) image = Image.open(image_path) width, height = image.size max_width = max(max_width, width) max_height = max(max_height, height) image_list.append((image_preprocessing(image))) frame_count += 1 image_names_final='\n'.join(image_names) print (f"Details: {frame_count} frames, {max_width}x{max_height}") return (image_list,METADATA, max_width, max_height,frame_count,folder,image_names_final,) class SetMetadata: def __init__(self): pass @classmethod def INPUT_TYPES(s): return {"required": { "number_of_frames":("INT", {"default": 1, "min": 1, "step": 1}), "fps":("INT", {"default": 30, "min": 1, "step": 1}), "VideoName": ("STRING", {"default": "manual"} ) }} RETURN_TYPES = ("STRING",) RETURN_NAMES = ("METADATA",) FUNCTION = "set_metadata" OUTPUT_IS_LIST = (False,) CATEGORY = "N-Suite/Video" def set_metadata(self, number_of_frames,fps,VideoName): METADATA = [fps, number_of_frames,VideoName] return (METADATA,) # A dictionary that contains all nodes you want to export with their names # NOTE: names should be globally unique NODE_CLASS_MAPPINGS = { "LoadVideo [n-suite]": LoadVideoAdvanced, "SaveVideo [n-suite]":SaveVideo, "LoadFramesFromFolder [n-suite]": LoadFramesFromFolder, "SetMetadataForSaveVideo [n-suite]": SetMetadata } # A dictionary that contains the friendly/humanly readable titles for the nodes NODE_DISPLAY_NAME_MAPPINGS = { "LoadVideo [n-suite]": "LoadVideo [🅝-🅢🅤🅘🅣🅔]", "SaveVideo [n-suite]": "SaveVideo [🅝-🅢🅤🅘🅣🅔]", "LoadFramesFromFolder [n-suite]": "LoadFramesFromFolder [🅝-🅢🅤🅘🅣🅔]", "SetMetadataForSaveVideo [n-suite]": "SetMetadataForSaveVideo [🅝-🅢🅤🅘🅣🅔]" }