Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,629 Bytes
528cf4a 043b99a 3ad533a 03e7073 528cf4a 91388f4 528cf4a c585392 528cf4a 3ad533a e95ccf0 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a e95ccf0 528cf4a e95ccf0 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 3ccd822 f736395 e95ccf0 f736395 1c0cdb5 f736395 2565173 f736395 2565173 f736395 2565173 f736395 2565173 f736395 2565173 f736395 2565173 f736395 28884a1 f736395 9a86201 f736395 2565173 f736395 2565173 f736395 2565173 f736395 2565173 41155d1 e873ae8 1c0cdb5 7b3ccc2 528cf4a 7b3ccc2 528cf4a 3ad533a 528cf4a 3ad533a 7b3ccc2 528cf4a 3ad533a 528cf4a 2565173 3ad533a 2565173 3ad533a 2565173 3ad533a 2565173 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 3ad533a 528cf4a 2565173 528cf4a 2565173 528cf4a 488a214 93ece79 488a214 5b95654 6464961 3ad533a 488a214 3ad533a 488a214 3ad533a 488a214 528cf4a 488a214 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import os
import time
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import traceback
import threading
from spaces import GPU
from datetime import datetime
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer
from transformers.utils import logging
from transformers import set_seed
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VibeVoiceDemo:
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
self.model_path = model_path
self.device = device
self.inference_steps = inference_steps
self.is_generating = False
self.processor = None
self.model = None
self.available_voices = {}
self.load_model()
self.setup_voice_presets()
self.load_example_scripts()
def load_model(self):
print(f"Loading processor & model from {self.model_path}")
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16
)
# self.model.eval()
# self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
def setup_voice_presets(self):
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
return
wav_files = [f for f in os.listdir(voices_dir)
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
for wav_file in wav_files:
name = os.path.splitext(wav_file)[0]
self.available_voices[name] = os.path.join(voices_dir, wav_file)
print(f"Voices loaded: {list(self.available_voices.keys())}")
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
try:
wav, sr = sf.read(audio_path)
if len(wav.shape) > 1:
wav = np.mean(wav, axis=1)
if sr != target_sr:
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
return wav
except Exception as e:
print(f"Error reading audio {audio_path}: {e}")
return np.array([])
@GPU(duration=180)
def generate_podcast(self,
num_speakers: int,
script: str,
speaker_1: str = None,
speaker_2: str = None,
speaker_3: str = None,
speaker_4: str = None,
cfg_scale: float = 1.3):
"""
Generates a podcast as a single audio file from a script and saves it.
This is a non-streaming function.
"""
try:
self.model = self.model.to(self.device)
print(f"Model successfully moved to device: {self.device.upper()}")
# Step 3: Continue with the rest of your setup.
self.model.eval()
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
# 1. Set generating state and validate inputs
self.is_generating = True
if not script.strip():
raise gr.Error("Error: Please provide a script.")
# Defend against common mistake with apostrophes
script = script.replace("β", "'")
if not 1 <= num_speakers <= 4:
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
# 2. Collect and validate selected speakers
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
for i, speaker_name in enumerate(selected_speakers):
if not speaker_name or speaker_name not in self.available_voices:
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
# 3. Build initial log
log = f"ποΈ Generating podcast with {num_speakers} speakers\n"
log += f"π Parameters: CFG Scale={cfg_scale}\n"
log += f"π Speakers: {', '.join(selected_speakers)}\n"
# 4. Load voice samples
voice_samples = []
for speaker_name in selected_speakers:
audio_path = self.available_voices[speaker_name]
# Assuming self.read_audio is a method in your class that returns audio data
audio_data = self.read_audio(audio_path)
if len(audio_data) == 0:
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
voice_samples.append(audio_data)
log += f"β
Loaded {len(voice_samples)} voice samples\n"
# 5. Parse and format the script
lines = script.strip().split('\n')
formatted_script_lines = []
for line in lines:
line = line.strip()
if not line:
continue
# Check if line already has speaker format (e.g., "Speaker 1: ...")
if line.startswith('Speaker ') and ':' in line:
formatted_script_lines.append(line)
else:
# Auto-assign speakers in rotation
speaker_id = len(formatted_script_lines) % num_speakers
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
formatted_script = '\n'.join(formatted_script_lines)
log += f"π Formatted script with {len(formatted_script_lines)} turns\n"
log += "π Processing with VibeVoice...\n"
# 6. Prepare inputs for the model
# Assuming self.processor is an object available in your class
inputs = self.processor(
text=[formatted_script],
voice_samples=[voice_samples],
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
# 7. Generate audio
start_time = time.time()
# Assuming self.model is an object available in your class
outputs = self.model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
generation_config={'do_sample': False},
verbose=False, # Verbose is off for cleaner logs
)
generation_time = time.time() - start_time
# 8. Extract audio output
# The generated audio is often in speech_outputs or a similar attribute
if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
audio_tensor = outputs.speech_outputs[0]
audio = audio_tensor.cpu().float().numpy()
else:
raise gr.Error("β Error: No audio was generated by the model. Please try again.")
# Ensure audio is a 1D array
if audio.ndim > 1:
audio = audio.squeeze()
sample_rate = 24000 # Standard sample rate for this model
# 9. Save the audio file
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_path = os.path.join(output_dir, f"podcast_{timestamp}.wav")
# Write the NumPy array to a WAV file
sf.write(file_path, audio, sample_rate)
print(f"πΎ Podcast saved to {file_path}")
# 10. Finalize log and return
total_duration = len(audio) / sample_rate
log += f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
log += f"π΅ Final audio duration: {total_duration:.2f} seconds\n"
log += f"β
Successfully saved podcast to: {file_path}\n"
self.is_generating = False
return (sample_rate, audio), log
except gr.Error as e:
# Handle Gradio-specific errors (for user feedback)
self.is_generating = False
error_msg = f"β Input Error: {str(e)}"
print(error_msg)
# In Gradio, you would typically return an update to the UI
# For a pure function, we re-raise or handle it as needed.
# This return signature matches the success case but with error info.
return None, error_msg
except Exception as e:
# Handle all other unexpected errors
self.is_generating = False
error_msg = f"β An unexpected error occurred: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return None, error_msg
@staticmethod
def _infer_num_speakers_from_script(script: str) -> int:
"""
Infer number of speakers by counting distinct 'Speaker X:' tags in the script.
Robust to 0- or 1-indexed labels and repeated turns.
Falls back to 1 if none found.
"""
import re
ids = re.findall(r'(?mi)^\s*Speaker\s+(\d+)\s*:', script)
return len({int(x) for x in ids}) if ids else 1
def load_example_scripts(self):
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
self.example_scripts = []
if not os.path.exists(examples_dir):
return
txt_files = sorted(
[f for f in os.listdir(examples_dir) if f.lower().endswith('.txt')]
)
for txt_file in txt_files:
try:
with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
script_content = f.read().strip()
if script_content:
num_speakers = self._infer_num_speakers_from_script(script_content)
self.example_scripts.append([num_speakers, script_content])
except Exception as e:
print(f"Error loading {txt_file}: {e}")
def convert_to_16_bit_wav(data):
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
data = np.array(data)
if np.max(np.abs(data)) > 1.0:
data = data / np.max(np.abs(data))
return (data * 32767).astype(np.int16)
def create_demo_interface(demo_instance: VibeVoiceDemo):
"""Create the Gradio interface (final audio only, no streaming)."""
# Custom CSS for high-end aesthetics
custom_css = """ ... """ # (keep your CSS unchanged)
with gr.Blocks(
title="VibeVoice - AI Podcast Generator",
css=custom_css,
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
)
) as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1>ποΈ Vibe Podcasting</h1>
<p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
</div>
""")
with gr.Row():
# Left column - Settings
with gr.Column(scale=1, elem_classes="settings-card"):
gr.Markdown("### ποΈ **Podcast Settings**")
num_speakers = gr.Slider(
minimum=1, maximum=4, value=2, step=1,
label="Number of Speakers",
elem_classes="slider-container"
)
gr.Markdown("### π **Speaker Selection**")
available_speaker_names = list(demo_instance.available_voices.keys())
default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
speaker_selections = []
for i in range(4):
default_value = default_speakers[i] if i < len(default_speakers) else None
speaker = gr.Dropdown(
choices=available_speaker_names,
value=default_value,
label=f"Speaker {i+1}",
visible=(i < 2),
elem_classes="speaker-item"
)
speaker_selections.append(speaker)
gr.Markdown("### βοΈ **Advanced Settings**")
with gr.Accordion("Generation Parameters", open=False):
cfg_scale = gr.Slider(
minimum=1.0, maximum=2.0, value=1.3, step=0.05,
label="CFG Scale (Guidance Strength)",
elem_classes="slider-container"
)
# Right column - Generation
with gr.Column(scale=2, elem_classes="generation-card"):
gr.Markdown("### π **Script Input**")
script_input = gr.Textbox(
label="Conversation Script",
placeholder="Enter your podcast script here...",
lines=12,
max_lines=20,
elem_classes="script-input"
)
with gr.Row():
random_example_btn = gr.Button(
"π² Random Example", size="lg",
variant="secondary", elem_classes="random-btn", scale=1
)
generate_btn = gr.Button(
"π Generate Podcast", size="lg",
variant="primary", elem_classes="generate-btn", scale=2
)
# Output section
gr.Markdown("### π΅ **Generated Podcast**")
complete_audio_output = gr.Audio(
label="Complete Podcast (Download)",
type="numpy",
elem_classes="audio-output complete-audio-section",
autoplay=False,
show_download_button=True,
visible=True
)
log_output = gr.Textbox(
label="Generation Log",
lines=8, max_lines=15,
interactive=False,
elem_classes="log-output"
)
# === logic ===
def update_speaker_visibility(num_speakers):
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
num_speakers.change(
fn=update_speaker_visibility,
inputs=[num_speakers],
outputs=speaker_selections
)
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
try:
speakers = speakers_and_params[:4]
cfg_scale = speakers_and_params[4]
audio, log = demo_instance.generate_podcast(
num_speakers=int(num_speakers),
script=script,
speaker_1=speakers[0],
speaker_2=speakers[1],
speaker_3=speakers[2],
speaker_4=speakers[3],
cfg_scale=cfg_scale
)
return audio, log
except Exception as e:
traceback.print_exc()
return None, f"β Error: {str(e)}"
generate_btn.click(
fn=generate_podcast_wrapper,
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
outputs=[complete_audio_output, log_output],
queue=True
)
def load_random_example():
import random
examples = getattr(demo_instance, "example_scripts", [])
if not examples:
examples = [
[2, "Speaker 0: Welcome to our AI podcast demo!\nSpeaker 1: Thanks, excited to be here!"]
]
num_speakers_value, script_value = random.choice(examples)
return num_speakers_value, script_value
random_example_btn.click(
fn=load_random_example,
inputs=[],
outputs=[num_speakers, script_input],
queue=False
)
gr.Markdown("### π **Example Scripts**")
examples = getattr(demo_instance, "example_scripts", []) or [
[1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
]
gr.Examples(
examples=examples,
inputs=[num_speakers, script_input],
label="Try these example scripts:"
)
return interface
def run_demo(
model_path: str = "aoi-ot/VibeVoice-Large",
device: str = "cuda",
inference_steps: int = 5,
share: bool = True,
):
set_seed(42)
demo_instance = VibeVoiceDemo(model_path, device, inference_steps)
interface = create_demo_interface(demo_instance)
interface.queue().launch(
share=share,
server_name="0.0.0.0" if share else "127.0.0.1",
show_error=True,
show_api=False
)
if __name__ == "__main__":
run_demo()
|