File size: 17,629 Bytes
528cf4a
 
 
 
 
 
 
 
043b99a
3ad533a
03e7073
528cf4a
 
 
91388f4
528cf4a
 
 
 
 
 
 
c585392
528cf4a
 
 
 
 
3ad533a
 
 
 
e95ccf0
528cf4a
3ad533a
 
528cf4a
 
3ad533a
528cf4a
 
e95ccf0
528cf4a
e95ccf0
 
3ad533a
528cf4a
 
 
 
 
3ad533a
 
528cf4a
 
3ad533a
 
 
528cf4a
 
 
 
 
 
 
 
 
 
 
3ad533a
3ccd822
f736395
 
 
 
 
 
 
 
 
 
 
 
 
e95ccf0
 
 
 
 
 
 
f736395
 
 
 
 
 
 
 
1c0cdb5
f736395
 
2565173
f736395
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
 
 
 
 
2565173
f736395
 
 
 
28884a1
f736395
 
9a86201
f736395
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2565173
f736395
 
 
 
 
 
 
 
2565173
41155d1
e873ae8
1c0cdb5
7b3ccc2
 
 
 
 
 
 
 
 
 
 
528cf4a
 
 
 
 
7b3ccc2
 
 
 
528cf4a
 
3ad533a
528cf4a
3ad533a
7b3ccc2
 
528cf4a
3ad533a
 
 
 
 
 
 
 
 
 
 
528cf4a
 
2565173
3ad533a
2565173
 
3ad533a
2565173
 
 
 
 
 
 
3ad533a
2565173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528cf4a
3ad533a
528cf4a
 
3ad533a
 
 
528cf4a
 
 
 
 
 
 
3ad533a
 
528cf4a
 
3ad533a
 
528cf4a
 
 
2565173
 
528cf4a
 
2565173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528cf4a
 
488a214
93ece79
488a214
5b95654
6464961
3ad533a
488a214
3ad533a
488a214
3ad533a
 
 
 
 
 
488a214
 
528cf4a
488a214
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import os
import time
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import traceback
import threading
from spaces import GPU
from datetime import datetime

from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer
from transformers.utils import logging
from transformers import set_seed

logging.set_verbosity_info()
logger = logging.get_logger(__name__)



class VibeVoiceDemo:
    def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
        self.model_path = model_path
        self.device = device
        self.inference_steps = inference_steps
        self.is_generating = False
        self.processor = None
        self.model = None
        self.available_voices = {}
        self.load_model()
        self.setup_voice_presets()
        self.load_example_scripts()

    def load_model(self):
        print(f"Loading processor & model from {self.model_path}")
        self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
        self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
            self.model_path,
            torch_dtype=torch.bfloat16
        )
        # self.model.eval()
        # self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)

    def setup_voice_presets(self):
        voices_dir = os.path.join(os.path.dirname(__file__), "voices")
        if not os.path.exists(voices_dir):
            print(f"Warning: Voices directory not found at {voices_dir}")
            return
        wav_files = [f for f in os.listdir(voices_dir)
                     if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
        for wav_file in wav_files:
            name = os.path.splitext(wav_file)[0]
            self.available_voices[name] = os.path.join(voices_dir, wav_file)
        print(f"Voices loaded: {list(self.available_voices.keys())}")

    def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
        try:
            wav, sr = sf.read(audio_path)
            if len(wav.shape) > 1:
                wav = np.mean(wav, axis=1)
            if sr != target_sr:
                wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
            return wav
        except Exception as e:
            print(f"Error reading audio {audio_path}: {e}")
            return np.array([])

    @GPU(duration=180)
    def generate_podcast(self, 
                     num_speakers: int, 
                     script: str,
                     speaker_1: str = None, 
                     speaker_2: str = None,
                     speaker_3: str = None, 
                     speaker_4: str = None,
                     cfg_scale: float = 1.3):
        """
        Generates a podcast as a single audio file from a script and saves it.
        This is a non-streaming function.
        """
        try:
            self.model = self.model.to(self.device)
    
            print(f"Model successfully moved to device: {self.device.upper()}")
        
            # Step 3: Continue with the rest of your setup.
            self.model.eval()
            self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
            # 1. Set generating state and validate inputs
            self.is_generating = True
            
            if not script.strip():
                raise gr.Error("Error: Please provide a script.")
                
            # Defend against common mistake with apostrophes
            script = script.replace("’", "'")
    
            if not 1 <= num_speakers <= 4:
                raise gr.Error("Error: Number of speakers must be between 1 and 4.")
    
            # 2. Collect and validate selected speakers
            selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
            for i, speaker_name in enumerate(selected_speakers):
                if not speaker_name or speaker_name not in self.available_voices:
                    raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
    
            # 3. Build initial log
            log = f"πŸŽ™οΈ Generating podcast with {num_speakers} speakers\n"
            log += f"πŸ“Š Parameters: CFG Scale={cfg_scale}\n"
            log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
            
            # 4. Load voice samples
            voice_samples = []
            for speaker_name in selected_speakers:
                audio_path = self.available_voices[speaker_name]
                # Assuming self.read_audio is a method in your class that returns audio data
                audio_data = self.read_audio(audio_path)
                if len(audio_data) == 0:
                    raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
                voice_samples.append(audio_data)
            
            log += f"βœ… Loaded {len(voice_samples)} voice samples\n"
    
            # 5. Parse and format the script
            lines = script.strip().split('\n')
            formatted_script_lines = []
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                
                # Check if line already has speaker format (e.g., "Speaker 1: ...")
                if line.startswith('Speaker ') and ':' in line:
                    formatted_script_lines.append(line)
                else:
                    # Auto-assign speakers in rotation
                    speaker_id = len(formatted_script_lines) % num_speakers
                    formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
            
            formatted_script = '\n'.join(formatted_script_lines)
            log += f"πŸ“ Formatted script with {len(formatted_script_lines)} turns\n"
            log += "πŸ”„ Processing with VibeVoice...\n"
    
            # 6. Prepare inputs for the model
            # Assuming self.processor is an object available in your class
            inputs = self.processor(
                text=[formatted_script],
                voice_samples=[voice_samples],
                padding=True,
                return_tensors="pt",
                return_attention_mask=True,
            )
    
            # 7. Generate audio
            start_time = time.time()
            # Assuming self.model is an object available in your class
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=None,
                cfg_scale=cfg_scale,
                tokenizer=self.processor.tokenizer,
                generation_config={'do_sample': False},
                verbose=False, # Verbose is off for cleaner logs
            )
            generation_time = time.time() - start_time
    
            # 8. Extract audio output
            # The generated audio is often in speech_outputs or a similar attribute
            if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
                audio_tensor = outputs.speech_outputs[0]
                audio = audio_tensor.cpu().float().numpy()
            else:
                raise gr.Error("❌ Error: No audio was generated by the model. Please try again.")
    
            # Ensure audio is a 1D array
            if audio.ndim > 1:
                audio = audio.squeeze()
            
            sample_rate = 24000 # Standard sample rate for this model
    
            # 9. Save the audio file
            output_dir = "outputs"
            os.makedirs(output_dir, exist_ok=True)
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            file_path = os.path.join(output_dir, f"podcast_{timestamp}.wav")
            
            # Write the NumPy array to a WAV file
            sf.write(file_path, audio, sample_rate)
            print(f"πŸ’Ύ Podcast saved to {file_path}")
    
            # 10. Finalize log and return
            total_duration = len(audio) / sample_rate
            log += f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
            log += f"🎡 Final audio duration: {total_duration:.2f} seconds\n"
            log += f"βœ… Successfully saved podcast to: {file_path}\n"
            
            self.is_generating = False
            return (sample_rate, audio), log

        except gr.Error as e:
            # Handle Gradio-specific errors (for user feedback)
            self.is_generating = False
            error_msg = f"❌ Input Error: {str(e)}"
            print(error_msg)
            # In Gradio, you would typically return an update to the UI
            # For a pure function, we re-raise or handle it as needed.
            # This return signature matches the success case but with error info.
            return None, error_msg
    
        except Exception as e:
            # Handle all other unexpected errors
            self.is_generating = False
            error_msg = f"❌ An unexpected error occurred: {str(e)}"
            print(error_msg)
            import traceback
            traceback.print_exc()
            return None, error_msg




    @staticmethod
    def _infer_num_speakers_from_script(script: str) -> int:
        """
        Infer number of speakers by counting distinct 'Speaker X:' tags in the script.
        Robust to 0- or 1-indexed labels and repeated turns.
        Falls back to 1 if none found.
        """
        import re
        ids = re.findall(r'(?mi)^\s*Speaker\s+(\d+)\s*:', script)
        return len({int(x) for x in ids}) if ids else 1

    def load_example_scripts(self):
        examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
        self.example_scripts = []
        if not os.path.exists(examples_dir):
            return

        txt_files = sorted(
            [f for f in os.listdir(examples_dir) if f.lower().endswith('.txt')]
        )
        for txt_file in txt_files:
            try:
                with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
                    script_content = f.read().strip()
                if script_content:
                    num_speakers = self._infer_num_speakers_from_script(script_content)
                    self.example_scripts.append([num_speakers, script_content])
            except Exception as e:
                print(f"Error loading {txt_file}: {e}")


def convert_to_16_bit_wav(data):
    if torch.is_tensor(data):
        data = data.detach().cpu().numpy()
    data = np.array(data)
    if np.max(np.abs(data)) > 1.0:
        data = data / np.max(np.abs(data))
    return (data * 32767).astype(np.int16)


def create_demo_interface(demo_instance: VibeVoiceDemo):
    """Create the Gradio interface (final audio only, no streaming)."""

    # Custom CSS for high-end aesthetics
    custom_css = """ ... """  # (keep your CSS unchanged)

    with gr.Blocks(
        title="VibeVoice - AI Podcast Generator",
        css=custom_css,
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="purple",
            neutral_hue="slate",
        )
    ) as interface:
        
        # Header
        gr.HTML("""
        <div class="main-header">
            <h1>πŸŽ™οΈ Vibe Podcasting</h1>
            <p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
        </div>
        """)
        
        with gr.Row():
            # Left column - Settings
            with gr.Column(scale=1, elem_classes="settings-card"):
                gr.Markdown("### πŸŽ›οΈ **Podcast Settings**")
                
                num_speakers = gr.Slider(
                    minimum=1, maximum=4, value=2, step=1,
                    label="Number of Speakers",
                    elem_classes="slider-container"
                )
                
                gr.Markdown("### 🎭 **Speaker Selection**")
                available_speaker_names = list(demo_instance.available_voices.keys())
                default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']

                speaker_selections = []
                for i in range(4):
                    default_value = default_speakers[i] if i < len(default_speakers) else None
                    speaker = gr.Dropdown(
                        choices=available_speaker_names,
                        value=default_value,
                        label=f"Speaker {i+1}",
                        visible=(i < 2),
                        elem_classes="speaker-item"
                    )
                    speaker_selections.append(speaker)
                
                gr.Markdown("### βš™οΈ **Advanced Settings**")
                with gr.Accordion("Generation Parameters", open=False):
                    cfg_scale = gr.Slider(
                        minimum=1.0, maximum=2.0, value=1.3, step=0.05,
                        label="CFG Scale (Guidance Strength)",
                        elem_classes="slider-container"
                    )
            
            # Right column - Generation
            with gr.Column(scale=2, elem_classes="generation-card"):
                gr.Markdown("### πŸ“ **Script Input**")
                script_input = gr.Textbox(
                    label="Conversation Script",
                    placeholder="Enter your podcast script here...",
                    lines=12,
                    max_lines=20,
                    elem_classes="script-input"
                )
                
                with gr.Row():
                    random_example_btn = gr.Button(
                        "🎲 Random Example", size="lg",
                        variant="secondary", elem_classes="random-btn", scale=1
                    )
                    generate_btn = gr.Button(
                        "πŸš€ Generate Podcast", size="lg",
                        variant="primary", elem_classes="generate-btn", scale=2
                    )
                
                # Output section
                gr.Markdown("### 🎡 **Generated Podcast**")
                complete_audio_output = gr.Audio(
                    label="Complete Podcast (Download)",
                    type="numpy",
                    elem_classes="audio-output complete-audio-section",
                    autoplay=False,
                    show_download_button=True,
                    visible=True
                )
                
                log_output = gr.Textbox(
                    label="Generation Log",
                    lines=8, max_lines=15,
                    interactive=False,
                    elem_classes="log-output"
                )
        
        # === logic ===
        def update_speaker_visibility(num_speakers):
            return [gr.update(visible=(i < num_speakers)) for i in range(4)]
        
        num_speakers.change(
            fn=update_speaker_visibility,
            inputs=[num_speakers],
            outputs=speaker_selections
        )

        def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
            try:
                speakers = speakers_and_params[:4]
                cfg_scale = speakers_and_params[4]
                audio, log = demo_instance.generate_podcast(
                    num_speakers=int(num_speakers),
                    script=script,
                    speaker_1=speakers[0],
                    speaker_2=speakers[1],
                    speaker_3=speakers[2],
                    speaker_4=speakers[3],
                    cfg_scale=cfg_scale
                )
                return audio, log
            except Exception as e:
                traceback.print_exc()
                return None, f"❌ Error: {str(e)}"

        generate_btn.click(
            fn=generate_podcast_wrapper,
            inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
            outputs=[complete_audio_output, log_output],
            queue=True
        )

        def load_random_example():
            import random
            examples = getattr(demo_instance, "example_scripts", [])
            if not examples:
                examples = [
                    [2, "Speaker 0: Welcome to our AI podcast demo!\nSpeaker 1: Thanks, excited to be here!"]
                ]
            num_speakers_value, script_value = random.choice(examples)
            return num_speakers_value, script_value

        random_example_btn.click(
            fn=load_random_example,
            inputs=[],
            outputs=[num_speakers, script_input],
            queue=False
        )
        
        gr.Markdown("### πŸ“š **Example Scripts**")
        examples = getattr(demo_instance, "example_scripts", []) or [
            [1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
        ]
        gr.Examples(
            examples=examples,
            inputs=[num_speakers, script_input],
            label="Try these example scripts:"
        )

    return interface



def run_demo(
    model_path: str = "aoi-ot/VibeVoice-Large",
    device: str = "cuda",
    inference_steps: int = 5,
    share: bool = True,
):
    set_seed(42)
    demo_instance = VibeVoiceDemo(model_path, device, inference_steps)
    interface = create_demo_interface(demo_instance)
    interface.queue().launch(
        share=share,
        server_name="0.0.0.0" if share else "127.0.0.1",
        show_error=True,
        show_api=False
    )


if __name__ == "__main__":
    run_demo()