File size: 9,711 Bytes
20a29ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
""" VibeVoice_AcousticTokenizer model configuration"""

from typing import Dict, List, Optional, Tuple

from transformers.configuration_utils import PretrainedConfig 
from transformers.utils import logging

from transformers.models.qwen2.configuration_qwen2 import Qwen2Config

logger = logging.get_logger(__name__)


class VibeVoiceAcousticTokenizerConfig(PretrainedConfig):
    model_type = "vibevoice_acoustic_tokenizer"

    def __init__(
        self,
        channels: int = 1,
        corpus_normalize: float = 0.0,
        causal: bool = True,
        vae_dim: int = 64,
        fix_std: float = 0.5,
        std_dist_type: str = 'gaussian',
        # common 
        mixer_layer: str = 'depthwise_conv',
        conv_norm: str = 'none',
        pad_mode: str = 'constant',
        disable_last_norm: bool = True,
        layernorm: str = 'RMSNorm',
        layernorm_eps: float = 1e-5,
        layernorm_elementwise_affine: bool = True,
        conv_bias: bool = True,
        layer_scale_init_value: float = 1e-6,
        weight_init_value: float = 1e-2,
        # encoder specific
        encoder_n_filters: int = 32,
        encoder_ratios: Optional[List[int]] = [8,5,5,4,2,2],
        encoder_depths: str = "3-3-3-3-3-3-8",
        # decoder specific
        decoder_n_filters: int = 32,
        decoder_ratios: Optional[List[int]] = None, # if None, same as encoder
        decoder_depths: Optional[str] = None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.channels = channels
        self.corpus_normalize = corpus_normalize
        self.causal = causal
        self.vae_dim = vae_dim
        self.fix_std = fix_std
        self.std_dist_type = std_dist_type
        
        # common parameters
        self.conv_norm = conv_norm
        self.pad_mode = pad_mode
        self.layernorm_eps = layernorm_eps
        self.disable_last_norm = disable_last_norm
        self.layernorm = layernorm
        self.layernorm_elementwise_affine = layernorm_elementwise_affine
        self.conv_bias = conv_bias
        self.layer_scale_init_value = layer_scale_init_value
        self.weight_init_value = weight_init_value
        self.mixer_layer = mixer_layer

        # encoder specific parameters
        self.encoder_n_filters = encoder_n_filters
        self.encoder_ratios = encoder_ratios
        self.encoder_depths = encoder_depths
        
        # decoder specific parameters
        self.decoder_ratios = decoder_ratios if decoder_ratios is not None else encoder_ratios
        self.decoder_n_filters = decoder_n_filters
        self.decoder_depths = decoder_depths


class VibeVoiceSemanticTokenizerConfig(PretrainedConfig):
    model_type = "vibevoice_semantic_tokenizer"
    
    def __init__(
        self,
        channels: int = 1,
        corpus_normalize: float = 0.0,
        causal: bool = True,
        vae_dim: int = 64,
        fix_std: float = 0,
        std_dist_type: str = 'none',
        # common 
        mixer_layer: str = 'depthwise_conv',
        conv_norm: str = 'none',
        pad_mode: str = 'constant',
        disable_last_norm: bool = True,
        layernorm: str = 'RMSNorm',
        layernorm_eps: float = 1e-5,
        layernorm_elementwise_affine: bool = True,
        conv_bias: bool = True,
        layer_scale_init_value: float = 1e-6,
        weight_init_value: float = 1e-2,
        # encoder specific
        encoder_n_filters: int = 32,
        encoder_ratios: Optional[List[int]] = [8,5,5,4,2,2],
        encoder_depths: str = "3-3-3-3-3-3-8",
        **kwargs
    ):
        super().__init__(**kwargs)
        self.channels = channels
        self.corpus_normalize = corpus_normalize
        self.causal = causal
        self.vae_dim = vae_dim
        self.fix_std = fix_std
        self.std_dist_type = std_dist_type
        
        # common parameters
        self.conv_norm = conv_norm
        self.pad_mode = pad_mode
        self.layernorm_eps = layernorm_eps
        self.disable_last_norm = disable_last_norm
        self.layernorm = layernorm
        self.layernorm_elementwise_affine = layernorm_elementwise_affine
        self.conv_bias = conv_bias
        self.layer_scale_init_value = layer_scale_init_value
        self.weight_init_value = weight_init_value
        self.mixer_layer = mixer_layer

        # encoder specific parameters
        self.encoder_n_filters = encoder_n_filters
        self.encoder_ratios = encoder_ratios
        self.encoder_depths = encoder_depths
        

class VibeVoiceDiffusionHeadConfig(PretrainedConfig):
    model_type = "vibevoice_diffusion_head"

    def __init__(
        self,
        hidden_size=768,
        head_layers=4,
        head_ffn_ratio=3.0,
        rms_norm_eps=1e-5,
        latent_size=64,
        speech_vae_dim=None,
        prediction_type="v_prediction",
        diffusion_type="ddpm",
        ddpm_num_steps=1000,
        ddpm_num_inference_steps=20,
        ddpm_beta_schedule="cosine",
        ddpm_batch_mul=4,
        **kwargs
    ):
        self.hidden_size = hidden_size
        self.head_layers = head_layers
        self.head_ffn_ratio = head_ffn_ratio
        self.rms_norm_eps = rms_norm_eps
        self.latent_size = latent_size
        self.speech_vae_dim = speech_vae_dim
        self.prediction_type = prediction_type
        self.diffusion_type = diffusion_type
        self.ddpm_num_steps = ddpm_num_steps
        self.ddpm_num_inference_steps = ddpm_num_inference_steps
        self.ddpm_beta_schedule = ddpm_beta_schedule
        self.ddpm_batch_mul = ddpm_batch_mul
        
        super().__init__(**kwargs)

class VibeVoiceConfig(PretrainedConfig):
    model_type = "vibevoice"
    is_composition = True
    sub_configs = {
        "acoustic_tokenizer_config": VibeVoiceAcousticTokenizerConfig, 
        "semantic_tokenizer_config": VibeVoiceSemanticTokenizerConfig,
        "decoder_config": Qwen2Config,
        "diffusion_head_config": VibeVoiceDiffusionHeadConfig,
    }
    # keys_to_ignore_at_inference = ["past_key_values"]
    # Default tensor parallel plan for base model `Qwen2`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }
    
    def __init__(
        self,
        acoustic_tokenizer_config=None,
        semantic_tokenizer_config=None,
        decoder_config=None,
        diffusion_head_config=None,
        **kwargs
    ):

        # kwargs["_attn_implementation"] = "flash_attention_2"
        kwargs["_attn_implementation_autoset"] = False 

        if acoustic_tokenizer_config is None:
            self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"]()
        elif isinstance(acoustic_tokenizer_config, dict):
            acoustic_tokenizer_config["model_type"] = "vibevoice_acoustic_tokenizer"
            self.acoustic_tokenizer_config = self.sub_configs["acoustic_tokenizer_config"](**acoustic_tokenizer_config)
        elif isinstance(acoustic_tokenizer_config, VibeVoiceAcousticTokenizerConfig):
            # If an instance of the config class is provided
            self.acoustic_tokenizer_config = acoustic_tokenizer_config

        if semantic_tokenizer_config is None:
            self.semantic_tokenizer_config = self.sub_configs["semantic_tokenizer_config"]()
        elif isinstance(semantic_tokenizer_config, dict):
            semantic_tokenizer_config["model_type"] = "vibevoice_semantic_tokenizer"
            self.semantic_tokenizer_config = self.sub_configs["semantic_tokenizer_config"](**semantic_tokenizer_config)
        elif isinstance(semantic_tokenizer_config, VibeVoiceSemanticTokenizerConfig):
            # If an instance of the config class is provided
            self.semantic_tokenizer_config = semantic_tokenizer_config

        if decoder_config is None:
            self.decoder_config = self.sub_configs["decoder_config"]()
        elif isinstance(decoder_config, dict):
            # If a dictionary is provided, instantiate the config class with it
            # self.decoder_config = self.sub_configs["decoder_config"](**decoder_config)
            if decoder_config.get("model_type", '') == "qwen2":
                self.decoder_config = Qwen2Config(**decoder_config)
            else:
                raise ValueError(f"Unsupported decoder model type: {decoder_config.get('model_type', '')}")
        elif isinstance(decoder_config, (Qwen2Config,)):
            # If an instance of the config class is provided
            self.decoder_config = decoder_config

        if diffusion_head_config is None:
            self.diffusion_head_config = self.sub_configs["diffusion_head_config"]()
        elif isinstance(diffusion_head_config, dict):
            diffusion_head_config["model_type"] = "vibevoice_diffusion_head"
            self.diffusion_head_config = self.sub_configs["diffusion_head_config"](**diffusion_head_config)
        elif isinstance(diffusion_head_config, VibeVoiceDiffusionHeadConfig):
            # If an instance of the config class is provided
            self.diffusion_head_config = diffusion_head_config

        # other parameters
        self.acoustic_vae_dim = getattr(self.acoustic_tokenizer_config, 'vae_dim', 64)
        self.semantic_vae_dim = getattr(self.semantic_tokenizer_config, 'vae_dim', 128)

        super().__init__(**kwargs)

__all__ = [
    "VibeVoiceAcousticTokenizerConfig", 
    "VibeVoiceSemanticTokenizerConfig", 
    "VibeVoiceDiffusionHeadConfig", 
    "VibeVoiceConfig"
]