Spaces:
Running
on
Zero
Running
on
Zero
File size: 50,892 Bytes
20a29ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 |
import math
import typing as tp
from functools import partial
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.auto import AutoModel
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceSemanticTokenizerConfig
logger = logging.get_logger(__name__)
import os
# Try to import APEX FusedRMSNorm
try:
from apex.normalization.fused_layer_norm import fused_rms_norm_affine
APEX_AVAILABLE = True
logger.info("APEX FusedRMSNorm is available and will be used for optimization")
if int(os.getenv("OPTIMIZE_FOR_SPEED", "0")) == 0:
APEX_AVAILABLE = False
logger.warning("APEX FusedRMSNorm is disabled by environment variable OPTIMIZE_FOR_SPEED=0")
except ImportError:
APEX_AVAILABLE = False
logger.warning("APEX FusedRMSNorm not available, using native implementation")
# APEX_AVAILABLE=False
# Normalization modules
class ConvLayerNorm(nn.LayerNorm):
"""
Convolution-friendly LayerNorm that moves channels to last dimensions
before running the normalization and moves them back to original position right after.
"""
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
super().__init__(normalized_shape, **kwargs)
def forward(self, x):
x = x.transpose(1, 2) # b ... t -> b t ...
x = nn.functional.layer_norm(x.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).type_as(x)
x = x.transpose(1, 2) # b t ... -> b ... t
return x
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
super().__init__()
self.dim = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
weight_shape = (dim,) if weight_shape is None else weight_shape
self.weight = nn.Parameter(torch.ones(weight_shape))
else:
self.register_parameter('weight', None)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
if self.weight is not None:
output = output * self.weight
return output
def extra_repr(self) -> str:
return f'dim={self.dim}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
class ConvRMSNorm(RMSNorm):
def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
super().__init__(dim, eps, elementwise_affine, weight_shape)
def forward(self, x):
x = x.transpose(1, 2) # b ... t -> b t ...
if (not APEX_AVAILABLE) or (not self.elementwise_affine):
# Fallback to native implementation
output = self._norm(x.float()).type_as(x)
if self.weight is not None:
output = output * self.weight
else:
output = fused_rms_norm_affine(x, self.weight, self.weight.shape, self.eps)
output = output.transpose(1, 2) # b t ... -> b ... t
return output
# Convolutional layers and utilities
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
'time_layer_norm', 'layer_norm', 'time_group_norm'])
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
assert norm in CONV_NORMALIZATIONS
if norm == 'weight_norm':
return nn.utils.weight_norm(module)
elif norm == 'spectral_norm':
return nn.utils.spectral_norm(module)
else:
# We already check was in CONV_NORMALIZATION, so any other choice
# doesn't need reparametrization.
return module
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
"""Return the proper normalization module. If causal is True, this will ensure the returned
module is causal, or return an error if the normalization doesn't support causal evaluation.
"""
assert norm in CONV_NORMALIZATIONS
if norm == 'layer_norm':
assert isinstance(module, nn.modules.conv._ConvNd)
return ConvLayerNorm(module.out_channels, **norm_kwargs)
elif norm == 'time_group_norm':
if causal:
raise ValueError("GroupNorm doesn't support causal evaluation.")
assert isinstance(module, nn.modules.conv._ConvNd)
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
else:
return nn.Identity()
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
padding_total: int = 0) -> int:
"""Calculate extra padding needed for convolution to have the same output length"""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
"""Pad 1D input with handling for small inputs in reflect mode"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
class NormConv1d(nn.Module):
"""Wrapper around Conv1d and normalization applied to this conv"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class NormConvTranspose1d(nn.Module):
"""Wrapper around ConvTranspose1d and normalization applied to this conv"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.convtr(x)
x = self.norm(x)
return x
class VibeVoiceTokenizerStreamingCache:
"""Cache for streaming convolution, similar to KV cache in attention"""
def __init__(self):
self.cache = {} # Dict mapping (layer_id, sample_idx) to state tensor
def get(self, layer_id: str, sample_indices: torch.Tensor) -> Optional[torch.Tensor]:
"""Get cached states for given layer and sample indices"""
states = []
max_length = 0
# First pass: collect states and find max length
for idx in sample_indices.tolist():
key = (layer_id, idx)
if key not in self.cache:
return None # If any sample is missing, return None
state = self.cache[key]
states.append(state)
max_length = max(max_length, state.shape[-1])
# Second pass: pad states to max length if needed
if len(states) > 0 and states[0].dim() >= 2:
padded_states = []
for state in states:
if state.shape[-1] < max_length:
# Pad on the time dimension (last dimension)
pad_size = max_length - state.shape[-1]
# Pad with zeros on the LEFT to align the most recent samples
padded_state = F.pad(state, (pad_size, 0), mode='constant', value=0)
padded_states.append(padded_state)
else:
padded_states.append(state)
return torch.stack(padded_states, dim=0)
else:
return torch.stack(states, dim=0)
def set(self, layer_id: str, sample_indices: torch.Tensor, states: torch.Tensor):
"""Set cached states for given layer and sample indices"""
for i, idx in enumerate(sample_indices.tolist()):
key = (layer_id, idx)
self.cache[key] = states[i].detach()
def set_to_zero(self, sample_indices: torch.Tensor):
"""Set all cached states to zero for given sample indices"""
for key in list(self.cache.keys()):
layer_id, sample_idx = key
if sample_idx in sample_indices.tolist():
# Create zero tensor with same shape and dtype as cached tensor
cached_tensor = self.cache[key]
self.cache[key] = torch.zeros_like(cached_tensor)
def clear(self, layer_id: Optional[str] = None, sample_indices: Optional[torch.Tensor] = None):
"""Clear cache for specific layer/samples or everything"""
if layer_id is None and sample_indices is None:
self.cache.clear()
elif layer_id is not None and sample_indices is None:
# Clear all samples for a specific layer
keys_to_remove = [k for k in self.cache.keys() if k[0] == layer_id]
for k in keys_to_remove:
del self.cache[k]
elif layer_id is not None and sample_indices is not None:
# Clear specific samples for a specific layer
for idx in sample_indices.tolist():
key = (layer_id, idx)
self.cache.pop(key, None)
class SConv1d(nn.Module):
"""Conv1d with built-in handling of asymmetric or causal padding and normalization."""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, dilation: int = 1,
groups: int = 1, bias: bool = True, causal: bool = False,
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
pad_mode: str = 'reflect'):
super().__init__()
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
dilation=dilation, groups=groups, bias=bias, causal=causal,
norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.pad_mode = pad_mode
# Store configuration
self.kernel_size = kernel_size
self.dilation = dilation
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
# For causal convolution, we need to maintain kernel_size - 1 samples as context
# need to check use which context_size is more suitable
# self.context_size = (kernel_size - 1) * dilation
self.context_size = (kernel_size - 1) * dilation - (stride - 1)
# For non-streaming mode, calculate padding
self.padding_total = (kernel_size - 1) * dilation - (stride - 1)
# Create a unique layer ID for cache management
self._layer_id = None
@property
def layer_id(self):
if self._layer_id is None:
self._layer_id = f"sconv1d_{id(self)}"
return self._layer_id
def forward(self, x: torch.Tensor,
cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
sample_indices: Optional[torch.Tensor] = None,
use_cache: bool = False,
debug: bool = False) -> torch.Tensor:
"""
Forward pass with optional streaming support via cache.
Args:
x: Input tensor [batch_size, channels, time]
cache: VibeVoiceTokenizerStreamingCache object for maintaining states
sample_indices: Indices identifying each sample for cache management
use_cache: Whether to use cached states for streaming
debug: Whether to print debug information
Returns:
Output tensor
"""
B, C, T = x.shape
# Non-streaming mode
if not use_cache or cache is None:
return self._forward_non_streaming(x, debug=debug)
# Streaming mode
assert self.causal, "Streaming mode is only supported for causal convolutions"
assert sample_indices is not None, "sample_indices must be provided for streaming mode"
assert len(sample_indices) == B, "sample_indices must match batch size"
return self._forward_streaming(x, cache, sample_indices, debug)
def _forward_streaming(self, x: torch.Tensor,
cache: VibeVoiceTokenizerStreamingCache,
sample_indices: torch.Tensor,
debug: bool = False) -> torch.Tensor:
"""Streaming forward pass with cache operations kept separate from compiled code"""
B, C, T = x.shape
# Cache operations (not compiled)
cached_states = cache.get(self.layer_id, sample_indices)
if cached_states is None:
# First chunk - initialize with zeros for context
if self.context_size > 0:
cached_states = torch.zeros(B, C, self.context_size, device=x.device, dtype=x.dtype)
if debug:
print(f"[DEBUG] Initialized cache with shape: {cached_states.shape}, context_size={self.context_size}")
else:
cached_states = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
if debug:
print(f"[DEBUG] No context needed (kernel_size=stride)")
# Concatenate cached states with input
if cached_states.shape[2] > 0:
input_with_context = torch.cat([cached_states, x], dim=2)
else:
input_with_context = x
if debug:
print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_states.shape}, Combined: {input_with_context.shape}")
# Apply convolution directly - no extra padding in streaming mode
# The conv layer will handle its own padding internally
output = self.conv(input_with_context)
if debug:
print(f"[DEBUG] Output shape: {output.shape}")
# Update cache for next chunk
if self.context_size > 0:
# Calculate how many samples to keep
total_input_length = input_with_context.shape[2]
# Keep the last context_size samples
if total_input_length >= self.context_size:
new_cache_start = total_input_length - self.context_size
new_cache = input_with_context[:, :, new_cache_start:]
else:
# If we have less than context_size samples, keep everything
new_cache = input_with_context
if debug:
print(f"[DEBUG] New cache shape: {new_cache.shape}")
cache.set(self.layer_id, sample_indices, new_cache)
return output
def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
"""Standard forward pass without streaming"""
B, C, T = x.shape
kernel_size = self.kernel_size
stride = self.stride
dilation = self.dilation
padding_total = self.padding_total
# Compute extra padding for stride alignment
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
if debug:
print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}, padding_total={padding_total}, extra_padding={extra_padding}")
if self.causal:
# Left padding for causal
if self.pad_mode == 'constant':
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode, value=0)
else:
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
else:
# Symmetric padding for non-causal
padding_right = padding_total // 2
padding_left = padding_total - padding_right
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
if debug:
print(f"[DEBUG NON-STREAMING] After padding: {x.shape}")
output = self.conv(x)
if debug:
print(f"[DEBUG NON-STREAMING] Output shape: {output.shape}")
return output
class SConvTranspose1d(nn.Module):
"""ConvTranspose1d with built-in handling of asymmetric or causal padding and normalization."""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, causal: bool = False,
norm: str = 'none', trim_right_ratio: float = 1.,
norm_kwargs: tp.Dict[str, tp.Any] = {}, bias: bool = True):
super().__init__()
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
causal=causal, norm=norm, norm_kwargs=norm_kwargs, bias=bias)
self.causal = causal
self.trim_right_ratio = trim_right_ratio
assert self.causal or self.trim_right_ratio == 1., \
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
# Store configuration
self.kernel_size = kernel_size
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
# For transposed convolution, padding calculation is different
self.padding_total = kernel_size - stride
# For streaming, we need to keep track of input history
# Transposed conv needs to see multiple input samples to produce correct output
self.context_size = kernel_size - 1
# Create a unique layer ID for cache management
self._layer_id = None
@property
def layer_id(self):
if self._layer_id is None:
self._layer_id = f"sconvtr1d_{id(self)}"
return self._layer_id
def forward(self, x: torch.Tensor,
cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
sample_indices: Optional[torch.Tensor] = None,
use_cache: bool = False,
debug: bool = False) -> torch.Tensor:
"""
Forward pass with optional streaming support via cache.
"""
B, C, T = x.shape
# Non-streaming mode
if not use_cache or cache is None:
return self._forward_non_streaming(x, debug=debug)
# Streaming mode
assert sample_indices is not None, "sample_indices must be provided for streaming mode"
assert len(sample_indices) == B, "sample_indices must match batch size"
return self._forward_streaming(x, cache, sample_indices, debug)
def _forward_streaming(self, x: torch.Tensor,
cache: VibeVoiceTokenizerStreamingCache,
sample_indices: torch.Tensor,
debug: bool = False) -> torch.Tensor:
"""Streaming forward pass with cache operations kept separate from compiled code"""
B, C, T = x.shape
# Cache operations (not compiled)
cached_input = cache.get(self.layer_id, sample_indices)
if cached_input is None:
# First chunk - no history yet
cached_input = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
if debug:
print(f"[DEBUG] Initialized empty cache for transposed conv")
# Concatenate cached input with new input
full_input = torch.cat([cached_input, x], dim=2)
if debug:
print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_input.shape}, Combined: {full_input.shape}")
# First chunk or debug mode - use uncompiled version
full_output = self.convtr(full_input)
if debug:
print(f"[DEBUG] Full transposed conv output shape: {full_output.shape}")
# Calculate padding to remove
if self.causal:
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
padding_left = self.padding_total - padding_right
else:
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
# Remove padding
if padding_left + padding_right > 0:
full_output = unpad1d(full_output, (padding_left, padding_right))
if debug:
print(f"[DEBUG] After unpadding: {full_output.shape}")
# Determine which part of the output corresponds to the new input
if cached_input.shape[2] == 0:
# First chunk - return all output
output = full_output
else:
# Subsequent chunks - return only the new output
expected_new_output = T * self.stride
# Take the last expected_new_output samples
if full_output.shape[2] >= expected_new_output:
output = full_output[:, :, -expected_new_output:]
else:
output = full_output
if debug:
print(f"[DEBUG] Final streaming output shape: {output.shape}")
# Update cache
if full_input.shape[2] > self.context_size:
new_cache = full_input[:, :, -self.context_size:]
else:
new_cache = full_input
if debug:
print(f"[DEBUG] New cache shape: {new_cache.shape}")
cache.set(self.layer_id, sample_indices, new_cache)
return output
def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
"""Standard forward pass without streaming"""
if debug:
print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}")
# Apply transposed convolution
y = self.convtr(x)
if debug:
print(f"[DEBUG NON-STREAMING] After transposed conv: {y.shape}")
# Calculate and remove padding
if self.causal:
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
padding_left = self.padding_total - padding_right
else:
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
if padding_left + padding_right > 0:
y = unpad1d(y, (padding_left, padding_right))
if debug:
print(f"[DEBUG NON-STREAMING] Final output shape: {y.shape}")
return y
# FFN
class FFN(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
bias=False,
):
super().__init__()
self.embed_dim = embed_dim
self.linear1 = nn.Linear(self.embed_dim, ffn_dim, bias=bias)
self.gelu = ACT2FN["gelu"]
self.linear2 = nn.Linear(ffn_dim, self.embed_dim, bias=bias)
def forward(self, x):
x = self.linear1(x)
x = self.gelu(x)
x = self.linear2(x)
return x
class Convlayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_mode='zeros',
norm='weight_norm',
causal=True,
):
super().__init__()
self.conv = SConv1d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation,
groups=groups, bias=bias, pad_mode=pad_mode, norm=norm, causal=causal)
def forward(self, x):
return self.conv(x)
class Block1D(nn.Module):
def __init__(self, dim, kernel_size=7, drop_path=0., mixer_layer='conv',
layer_scale_init_value=1e-6, **kwargs):
super().__init__()
if kwargs.get('layernorm', 'LN') == 'LN':
self.norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
self.ffn_norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
elif kwargs.get('layernorm', 'RMSNorm') == 'RMSNorm':
self.norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
self.ffn_norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
if mixer_layer == 'conv':
self.mixer = Convlayer(dim, dim, groups=kwargs.get('groups', 1),
kernel_size=kernel_size,
pad_mode=kwargs.get('pad_mode', 'reflect'),
norm=kwargs.get('norm', 'none'),
causal=kwargs.get('causal', True),
bias=kwargs.get('bias', True),
)
elif mixer_layer == 'depthwise_conv':
self.mixer = Convlayer(dim, dim, groups=dim,
kernel_size=kernel_size,
pad_mode=kwargs.get('pad_mode', 'reflect'),
norm=kwargs.get('norm', 'none'),
causal=kwargs.get('causal', True),
bias=kwargs.get('bias', True),
)
else:
raise ValueError(f"Unsupported mixer layer: {mixer_layer}")
self.ffn = FFN(
dim,
kwargs.get('ffn_expansion', 4) * dim,
bias=kwargs.get('bias', False),
)
self.drop_path = nn.Identity() if drop_path <= 0. else nn.modules.DropPath(drop_path)
if layer_scale_init_value > 0:
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.ffn_gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
else:
self.gamma = None
self.ffn_gamma = None
def forward(self, x):
# mixer
residual = x
x = self.norm(x)
x = self.mixer(x)
if self.gamma is not None:
x = x * self.gamma.unsqueeze(-1)
x = residual + self.drop_path(x)
# ffn
residual = x
x = self.ffn_norm(x)
x = x.permute(0, 2, 1)
x = self.ffn(x)
x = x.permute(0, 2, 1)
if self.ffn_gamma is not None:
x = x * self.ffn_gamma.unsqueeze(-1)
x = residual + self.drop_path(x)
return x
class TokenizerEncoder(nn.Module):
"""
Encoder component for the VibeVoice tokenizer that converts audio to latent representations.
Args:
config: Configuration object with model parameters
"""
def __init__(self, config):
super().__init__()
# Extract parameters from config
self.channels = config.channels
self.dimension = config.dimension
self.n_filters = config.n_filters
self.ratios = list(reversed(config.ratios))
self.depths = config.depths
self.n_residual_layers = getattr(config, "n_residual_layers", 1)
self.hop_length = np.prod(self.ratios)
self.causal = config.causal
# Additional config parameters with defaults
kernel_size = getattr(config, "kernel_size", 7)
last_kernel_size = getattr(config, "last_kernel_size", 7)
norm = getattr(config, "norm", "none")
norm_params = getattr(config, "norm_params", {})
pad_mode = getattr(config, "pad_mode", "reflect")
bias = getattr(config, "bias", True)
layernorm = getattr(config, "layernorm", "LN")
layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
drop_path_rate = getattr(config, "drop_path_rate", 0.0)
mixer_layer = getattr(config, "mixer_layer", "conv")
layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
disable_last_norm = getattr(config, "disable_last_norm", False)
# determine the norm type based on layernorm
if layernorm == 'LN':
norm_type = ConvLayerNorm
elif layernorm == 'RMSNorm':
norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
else:
raise ValueError(f"Unsupported norm type: {layernorm}")
# stem and intermediate downsampling conv layers
stem = nn.Sequential(
SConv1d(self.channels, self.n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
)
self.downsample_layers = nn.ModuleList()
self.downsample_layers.append(stem)
for i in range(len(self.ratios)):
in_ch = self.n_filters * (2 ** i)
out_ch = self.n_filters * (2 ** (i + 1))
downsample_layer = nn.Sequential(
SConv1d(in_ch, out_ch, kernel_size=self.ratios[i] * 2, stride=self.ratios[i], causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
)
self.downsample_layers.append(downsample_layer)
# configure the transformer blocks
layer_type = partial(
Block1D,
mixer_layer=mixer_layer,
layernorm=layernorm,
eps=layernorm_eps,
causal=self.causal,
pad_mode=pad_mode,
norm=norm,
bias=bias,
layer_scale_init_value=layer_scale_init_value,
)
self.stages = nn.ModuleList()
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(len(self.depths)):
in_ch = self.n_filters * (2 ** i)
stage = nn.Sequential(
*[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
)
self.stages.append(stage)
cur += self.depths[i]
if not disable_last_norm:
self.norm = norm_type(in_ch, eps=layernorm_eps)
else:
self.norm = nn.Identity()
self.head = SConv1d(in_ch, self.dimension, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
for i in range(len(self.depths)):
# Apply downsampling
for layer in self.downsample_layers[i]:
if isinstance(layer, SConv1d):
x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
else:
x = layer(x)
# Apply stage (Block1D contains Convlayer which contains SConv1d)
for block in self.stages[i]:
if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
# Block1D forward with cache support
residual = x
x = block.norm(x)
x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
if block.gamma is not None:
x = x * block.gamma.unsqueeze(-1)
x = residual + x
# FFN part
residual = x
x = block.ffn_norm(x)
x = x.permute(0, 2, 1)
x = block.ffn(x)
x = x.permute(0, 2, 1)
if block.ffn_gamma is not None:
x = x * block.ffn_gamma.unsqueeze(-1)
x = residual + x
else:
x = block(x)
return self.norm(x)
def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return x
class TokenizerDecoder(nn.Module):
"""
Decoder component for the VibeVoice tokenizer that converts latent representations back to audio.
Args:
config: Configuration object with model parameters
"""
def __init__(self, config):
super().__init__()
# Extract parameters from config
self.dimension = config.dimension
self.channels = config.channels
self.n_filters = config.n_filters
self.ratios = config.ratios
# IMPORTANT CHANGE: Don't reverse depths again since they're already reversed in VibeVoiceAcousticTokenizerModel
self.depths = config.depths # Changed from list(reversed(config.depths))
self.n_residual_layers = getattr(config, "n_residual_layers", 1)
self.hop_length = np.prod(self.ratios)
self.causal = config.causal
# Additional config parameters with defaults
kernel_size = getattr(config, "kernel_size", 7)
last_kernel_size = getattr(config, "last_kernel_size", 7)
norm = getattr(config, "norm", "none")
norm_params = getattr(config, "norm_params", {})
pad_mode = getattr(config, "pad_mode", "reflect")
bias = getattr(config, "bias", True)
layernorm = getattr(config, "layernorm", "LN")
layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
trim_right_ratio = getattr(config, "trim_right_ratio", 1.0)
layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
drop_path_rate = getattr(config, "drop_path_rate", 0.0)
mixer_layer = getattr(config, "mixer_layer", "conv")
layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
disable_last_norm = getattr(config, "disable_last_norm", False)
# determine the norm type based on layernorm
if layernorm == 'LN':
norm_type = ConvLayerNorm
elif layernorm == 'RMSNorm':
norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
else:
raise ValueError(f"Unsupported norm type: {layernorm}")
# stem and upsampling layers
stem = nn.Sequential(
SConv1d(self.dimension, self.n_filters * 2 ** (len(self.depths) - 1), kernel_size, norm=norm,
norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
)
self.upsample_layers = nn.ModuleList()
self.upsample_layers.append(stem)
for i in range(len(self.ratios)):
in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
out_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i - 1))
upsample_layer = nn.Sequential(
SConvTranspose1d(in_ch, out_ch,
kernel_size=self.ratios[i] * 2, stride=self.ratios[i],
norm=norm, norm_kwargs=norm_params, bias=bias,
causal=self.causal, trim_right_ratio=trim_right_ratio),
)
self.upsample_layers.append(upsample_layer)
# configure transformer blocks
layer_type = partial(
Block1D,
mixer_layer=mixer_layer,
layernorm=layernorm,
eps=layernorm_eps,
causal=self.causal,
pad_mode=pad_mode,
norm=norm,
bias=bias,
layer_scale_init_value=layer_scale_init_value,
)
self.stages = nn.ModuleList()
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
# Create stages in the same order as the original model
for i in range(len(self.depths)):
in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
stage = nn.Sequential(
*[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
)
self.stages.append(stage)
cur += self.depths[i]
if not disable_last_norm:
self.norm = norm_type(in_ch, eps=layernorm_eps)
else:
self.norm = nn.Identity()
self.head = SConv1d(in_ch, self.channels, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
for i in range(len(self.depths)):
# Apply upsampling
for layer in self.upsample_layers[i]:
if isinstance(layer, (SConv1d, SConvTranspose1d)):
x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
else:
x = layer(x)
# Apply stage (Block1D contains Convlayer which contains SConv1d)
for block in self.stages[i]:
if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
# Block1D forward with cache support
residual = x
x = block.norm(x)
x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
if block.gamma is not None:
x = x * block.gamma.unsqueeze(-1)
x = residual + x
# FFN part
residual = x
x = block.ffn_norm(x)
x = x.permute(0, 2, 1)
x = block.ffn(x)
x = x.permute(0, 2, 1)
if block.ffn_gamma is not None:
x = x * block.ffn_gamma.unsqueeze(-1)
x = residual + x
else:
x = block(x)
return self.norm(x)
def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return x
@dataclass
class VibeVoiceTokenizerEncoderOutput:
"""
Output of VibeVoice tokenizer encoder, representing a Gaussian distribution with fixed variance.
Args:
mean (`torch.FloatTensor`): The mean parameters of the distribution.
std (`float` or `torch.FloatTensor`): Fixed standard deviation value.
"""
mean: torch.Tensor
std: Optional[Union[float, torch.Tensor]] = None
def sample(self, dist_type='fix'):
"""
Sample from the distribution.
Args:
dist_type (`str`): Sampling method, either 'fix' or 'gaussian'.
Returns:
`torch.FloatTensor`: Sampled values.
`torch.FloatTensor` (optional): Standard deviation used (only when dist_type='gaussian').
"""
if dist_type == 'fix':
x = self.mean + self.std * torch.randn_like(self.mean)
return x, self.std
elif dist_type == 'gaussian':
batch_size = self.mean.size(0)
value = self.std / 0.8
std = torch.randn(batch_size, device=self.mean.device, dtype=self.mean.dtype) * value
while std.dim() < self.mean.dim():
std = std.unsqueeze(-1)
x = self.mean + std * torch.randn_like(self.mean)
return x, std
else:
return self.mean, self.std
def kl(self):
"""Compute KL divergence between this distribution and a standard normal."""
target = torch.zeros_like(self.mean)
return F.mse_loss(self.mean, target, reduction='none')
def mode(self):
"""Return the distribution mode (which is the mean for Gaussian)."""
return self.mean
class VibeVoiceAcousticTokenizerModel(PreTrainedModel):
"""VibeVoice speech tokenizer model combining encoder and decoder for acoustic tokens"""
config_class = VibeVoiceAcousticTokenizerConfig
base_model_prefix = "vibevoice_acoustic_tokenizer"
_supports_flash_attn_2 = True
_supports_sdpa = True
_no_split_modules = ["TokenizerEncoder", "TokenizerDecoder"]
def __init__(self, config):
super().__init__(config)
self.register_buffer('fix_std', torch.tensor(config.fix_std), persistent=False)
self.std_dist_type = getattr(config, "std_dist_type", "fix")
# Parse encoder depths
if isinstance(config.encoder_depths, str):
encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
else:
encoder_depths = config.encoder_depths
# Parse decoder depths if provided
if config.decoder_depths is not None and isinstance(config.decoder_depths, str):
decoder_depths = [int(d) for d in config.decoder_depths.split('-')]
else:
# Default: use reversed encoder depths if decoder_depths is None
decoder_depths = list(reversed(encoder_depths))
# Create encoder config
encoder_config = copy.deepcopy(config)
encoder_config.dimension = config.vae_dim
encoder_config.n_filters = config.encoder_n_filters
encoder_config.ratios = config.encoder_ratios
encoder_config.depths = encoder_depths
encoder_config.norm = config.conv_norm
encoder_config.pad_mode = config.pad_mode
encoder_config.bias = config.conv_bias
encoder_config.layernorm_eps = config.layernorm_eps
encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
encoder_config.mixer_layer = config.mixer_layer
encoder_config.layer_scale_init_value = config.layer_scale_init_value
encoder_config.disable_last_norm = config.disable_last_norm
# Create decoder config
decoder_config = copy.deepcopy(config)
decoder_config.dimension = config.vae_dim
decoder_config.n_filters = config.decoder_n_filters
decoder_config.ratios = config.decoder_ratios
decoder_config.depths = decoder_depths
decoder_config.norm = config.conv_norm
decoder_config.pad_mode = config.pad_mode
decoder_config.bias = config.conv_bias
decoder_config.layernorm_eps = config.layernorm_eps
decoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
decoder_config.mixer_layer = config.mixer_layer
decoder_config.layer_scale_init_value = config.layer_scale_init_value
decoder_config.disable_last_norm = config.disable_last_norm
# Initialize encoder and decoder
self.encoder = TokenizerEncoder(encoder_config)
self.decoder = TokenizerDecoder(decoder_config)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
"""Initialize weights for the model"""
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv1d):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
@torch.no_grad()
def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Convert audio to latent representations"""
latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1), std=self.fix_std)
@torch.no_grad()
def sampling(self, encoder_output, dist_type=None):
"""Sample from the encoder output distribution"""
dist_type = dist_type or self.std_dist_type
if dist_type == 'fix':
return encoder_output.sample(dist_type='fix')
elif dist_type == 'gaussian':
return encoder_output.sample(dist_type='gaussian')
else:
raise ValueError(f"Unsupported dist_type: {dist_type}, expected 'fix' or 'gaussian'")
@torch.no_grad()
def decode(self, latents, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Convert latent representations back to audio"""
if latents.shape[1] == self.config.vae_dim:
pass
else:
latents = latents.permute(0, 2, 1)
audio = self.decoder(latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return audio
def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Full forward pass: encode audio to latents, then decode back to audio"""
encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
sampled_latents, _ = self.sampling(encoder_output)
reconstructed = self.decode(sampled_latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return reconstructed, sampled_latents
class VibeVoiceSemanticTokenizerModel(PreTrainedModel):
"""VibeVoice speech tokenizer model with only encoder for semantic tokens"""
config_class = VibeVoiceSemanticTokenizerConfig
base_model_prefix = "vibevoice_semantic_tokenizer"
_supports_flash_attn_2 = True
_supports_sdpa = True
_no_split_modules = ["TokenizerEncoder"]
def __init__(self, config):
super().__init__(config)
# Parse encoder depths
if isinstance(config.encoder_depths, str):
encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
else:
encoder_depths = config.encoder_depths
# Create encoder config
encoder_config = copy.deepcopy(config)
encoder_config.dimension = config.vae_dim
encoder_config.n_filters = config.encoder_n_filters
encoder_config.ratios = config.encoder_ratios
encoder_config.depths = encoder_depths
encoder_config.norm = config.conv_norm
encoder_config.pad_mode = config.pad_mode
encoder_config.bias = config.conv_bias
encoder_config.layernorm_eps = config.layernorm_eps
encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
encoder_config.mixer_layer = config.mixer_layer
encoder_config.layer_scale_init_value = config.layer_scale_init_value
encoder_config.disable_last_norm = config.disable_last_norm
# Initialize encoder and decoder
self.encoder = TokenizerEncoder(encoder_config)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
"""Initialize weights for the model"""
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv1d):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
@torch.no_grad()
def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Convert audio to latent representations"""
latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1))
@torch.no_grad()
def sampling(self, encoder_output, dist_type=None):
"""Sample from the encoder output distribution"""
return encoder_output.sample(dist_type='none')
def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Full forward pass: encode audio to latents, then decode back to audio"""
encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
sampled_latents, _ = self.sampling(encoder_output, dist_type='none')
return None, sampled_latents
AutoModel.register(VibeVoiceAcousticTokenizerConfig, VibeVoiceAcousticTokenizerModel)
AutoModel.register(VibeVoiceSemanticTokenizerConfig, VibeVoiceSemanticTokenizerModel)
__all__ = [
"VibeVoiceTokenizerStreamingCache",
"VibeVoiceAcousticTokenizerModel",
"VibeVoiceSemanticTokenizerModel",
] |