VibeVoice-Large / modular /modular_vibevoice_tokenizer.py
yasserrmd's picture
Upload folder using huggingface_hub
20a29ac verified
import math
import typing as tp
from functools import partial
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.auto import AutoModel
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from .configuration_vibevoice import VibeVoiceAcousticTokenizerConfig, VibeVoiceSemanticTokenizerConfig
logger = logging.get_logger(__name__)
import os
# Try to import APEX FusedRMSNorm
try:
from apex.normalization.fused_layer_norm import fused_rms_norm_affine
APEX_AVAILABLE = True
logger.info("APEX FusedRMSNorm is available and will be used for optimization")
if int(os.getenv("OPTIMIZE_FOR_SPEED", "0")) == 0:
APEX_AVAILABLE = False
logger.warning("APEX FusedRMSNorm is disabled by environment variable OPTIMIZE_FOR_SPEED=0")
except ImportError:
APEX_AVAILABLE = False
logger.warning("APEX FusedRMSNorm not available, using native implementation")
# APEX_AVAILABLE=False
# Normalization modules
class ConvLayerNorm(nn.LayerNorm):
"""
Convolution-friendly LayerNorm that moves channels to last dimensions
before running the normalization and moves them back to original position right after.
"""
def __init__(self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs):
super().__init__(normalized_shape, **kwargs)
def forward(self, x):
x = x.transpose(1, 2) # b ... t -> b t ...
x = nn.functional.layer_norm(x.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).type_as(x)
x = x.transpose(1, 2) # b t ... -> b ... t
return x
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
super().__init__()
self.dim = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
weight_shape = (dim,) if weight_shape is None else weight_shape
self.weight = nn.Parameter(torch.ones(weight_shape))
else:
self.register_parameter('weight', None)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
if self.weight is not None:
output = output * self.weight
return output
def extra_repr(self) -> str:
return f'dim={self.dim}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
class ConvRMSNorm(RMSNorm):
def __init__(self, dim: int, eps: float = 1e-5, elementwise_affine=True, weight_shape=None):
super().__init__(dim, eps, elementwise_affine, weight_shape)
def forward(self, x):
x = x.transpose(1, 2) # b ... t -> b t ...
if (not APEX_AVAILABLE) or (not self.elementwise_affine):
# Fallback to native implementation
output = self._norm(x.float()).type_as(x)
if self.weight is not None:
output = output * self.weight
else:
output = fused_rms_norm_affine(x, self.weight, self.weight.shape, self.eps)
output = output.transpose(1, 2) # b t ... -> b ... t
return output
# Convolutional layers and utilities
CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
'time_layer_norm', 'layer_norm', 'time_group_norm'])
def apply_parametrization_norm(module: nn.Module, norm: str = 'none') -> nn.Module:
assert norm in CONV_NORMALIZATIONS
if norm == 'weight_norm':
return nn.utils.weight_norm(module)
elif norm == 'spectral_norm':
return nn.utils.spectral_norm(module)
else:
# We already check was in CONV_NORMALIZATION, so any other choice
# doesn't need reparametrization.
return module
def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs) -> nn.Module:
"""Return the proper normalization module. If causal is True, this will ensure the returned
module is causal, or return an error if the normalization doesn't support causal evaluation.
"""
assert norm in CONV_NORMALIZATIONS
if norm == 'layer_norm':
assert isinstance(module, nn.modules.conv._ConvNd)
return ConvLayerNorm(module.out_channels, **norm_kwargs)
elif norm == 'time_group_norm':
if causal:
raise ValueError("GroupNorm doesn't support causal evaluation.")
assert isinstance(module, nn.modules.conv._ConvNd)
return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
else:
return nn.Identity()
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
padding_total: int = 0) -> int:
"""Calculate extra padding needed for convolution to have the same output length"""
length = x.shape[-1]
n_frames = (length - kernel_size + padding_total) / stride + 1
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
return ideal_length - length
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'zero', value: float = 0.):
"""Pad 1D input with handling for small inputs in reflect mode"""
length = x.shape[-1]
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
if mode == 'reflect':
max_pad = max(padding_left, padding_right)
extra_pad = 0
if length <= max_pad:
extra_pad = max_pad - length + 1
x = F.pad(x, (0, extra_pad))
padded = F.pad(x, paddings, mode, value)
end = padded.shape[-1] - extra_pad
return padded[..., :end]
else:
return F.pad(x, paddings, mode, value)
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
padding_left, padding_right = paddings
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
assert (padding_left + padding_right) <= x.shape[-1]
end = x.shape[-1] - padding_right
return x[..., padding_left: end]
class NormConv1d(nn.Module):
"""Wrapper around Conv1d and normalization applied to this conv"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class NormConvTranspose1d(nn.Module):
"""Wrapper around ConvTranspose1d and normalization applied to this conv"""
def __init__(self, *args, causal: bool = False, norm: str = 'none',
norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
super().__init__()
self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
self.norm_type = norm
def forward(self, x):
x = self.convtr(x)
x = self.norm(x)
return x
class VibeVoiceTokenizerStreamingCache:
"""Cache for streaming convolution, similar to KV cache in attention"""
def __init__(self):
self.cache = {} # Dict mapping (layer_id, sample_idx) to state tensor
def get(self, layer_id: str, sample_indices: torch.Tensor) -> Optional[torch.Tensor]:
"""Get cached states for given layer and sample indices"""
states = []
max_length = 0
# First pass: collect states and find max length
for idx in sample_indices.tolist():
key = (layer_id, idx)
if key not in self.cache:
return None # If any sample is missing, return None
state = self.cache[key]
states.append(state)
max_length = max(max_length, state.shape[-1])
# Second pass: pad states to max length if needed
if len(states) > 0 and states[0].dim() >= 2:
padded_states = []
for state in states:
if state.shape[-1] < max_length:
# Pad on the time dimension (last dimension)
pad_size = max_length - state.shape[-1]
# Pad with zeros on the LEFT to align the most recent samples
padded_state = F.pad(state, (pad_size, 0), mode='constant', value=0)
padded_states.append(padded_state)
else:
padded_states.append(state)
return torch.stack(padded_states, dim=0)
else:
return torch.stack(states, dim=0)
def set(self, layer_id: str, sample_indices: torch.Tensor, states: torch.Tensor):
"""Set cached states for given layer and sample indices"""
for i, idx in enumerate(sample_indices.tolist()):
key = (layer_id, idx)
self.cache[key] = states[i].detach()
def set_to_zero(self, sample_indices: torch.Tensor):
"""Set all cached states to zero for given sample indices"""
for key in list(self.cache.keys()):
layer_id, sample_idx = key
if sample_idx in sample_indices.tolist():
# Create zero tensor with same shape and dtype as cached tensor
cached_tensor = self.cache[key]
self.cache[key] = torch.zeros_like(cached_tensor)
def clear(self, layer_id: Optional[str] = None, sample_indices: Optional[torch.Tensor] = None):
"""Clear cache for specific layer/samples or everything"""
if layer_id is None and sample_indices is None:
self.cache.clear()
elif layer_id is not None and sample_indices is None:
# Clear all samples for a specific layer
keys_to_remove = [k for k in self.cache.keys() if k[0] == layer_id]
for k in keys_to_remove:
del self.cache[k]
elif layer_id is not None and sample_indices is not None:
# Clear specific samples for a specific layer
for idx in sample_indices.tolist():
key = (layer_id, idx)
self.cache.pop(key, None)
class SConv1d(nn.Module):
"""Conv1d with built-in handling of asymmetric or causal padding and normalization."""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, dilation: int = 1,
groups: int = 1, bias: bool = True, causal: bool = False,
norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
pad_mode: str = 'reflect'):
super().__init__()
self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
dilation=dilation, groups=groups, bias=bias, causal=causal,
norm=norm, norm_kwargs=norm_kwargs)
self.causal = causal
self.pad_mode = pad_mode
# Store configuration
self.kernel_size = kernel_size
self.dilation = dilation
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
# For causal convolution, we need to maintain kernel_size - 1 samples as context
# need to check use which context_size is more suitable
# self.context_size = (kernel_size - 1) * dilation
self.context_size = (kernel_size - 1) * dilation - (stride - 1)
# For non-streaming mode, calculate padding
self.padding_total = (kernel_size - 1) * dilation - (stride - 1)
# Create a unique layer ID for cache management
self._layer_id = None
@property
def layer_id(self):
if self._layer_id is None:
self._layer_id = f"sconv1d_{id(self)}"
return self._layer_id
def forward(self, x: torch.Tensor,
cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
sample_indices: Optional[torch.Tensor] = None,
use_cache: bool = False,
debug: bool = False) -> torch.Tensor:
"""
Forward pass with optional streaming support via cache.
Args:
x: Input tensor [batch_size, channels, time]
cache: VibeVoiceTokenizerStreamingCache object for maintaining states
sample_indices: Indices identifying each sample for cache management
use_cache: Whether to use cached states for streaming
debug: Whether to print debug information
Returns:
Output tensor
"""
B, C, T = x.shape
# Non-streaming mode
if not use_cache or cache is None:
return self._forward_non_streaming(x, debug=debug)
# Streaming mode
assert self.causal, "Streaming mode is only supported for causal convolutions"
assert sample_indices is not None, "sample_indices must be provided for streaming mode"
assert len(sample_indices) == B, "sample_indices must match batch size"
return self._forward_streaming(x, cache, sample_indices, debug)
def _forward_streaming(self, x: torch.Tensor,
cache: VibeVoiceTokenizerStreamingCache,
sample_indices: torch.Tensor,
debug: bool = False) -> torch.Tensor:
"""Streaming forward pass with cache operations kept separate from compiled code"""
B, C, T = x.shape
# Cache operations (not compiled)
cached_states = cache.get(self.layer_id, sample_indices)
if cached_states is None:
# First chunk - initialize with zeros for context
if self.context_size > 0:
cached_states = torch.zeros(B, C, self.context_size, device=x.device, dtype=x.dtype)
if debug:
print(f"[DEBUG] Initialized cache with shape: {cached_states.shape}, context_size={self.context_size}")
else:
cached_states = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
if debug:
print(f"[DEBUG] No context needed (kernel_size=stride)")
# Concatenate cached states with input
if cached_states.shape[2] > 0:
input_with_context = torch.cat([cached_states, x], dim=2)
else:
input_with_context = x
if debug:
print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_states.shape}, Combined: {input_with_context.shape}")
# Apply convolution directly - no extra padding in streaming mode
# The conv layer will handle its own padding internally
output = self.conv(input_with_context)
if debug:
print(f"[DEBUG] Output shape: {output.shape}")
# Update cache for next chunk
if self.context_size > 0:
# Calculate how many samples to keep
total_input_length = input_with_context.shape[2]
# Keep the last context_size samples
if total_input_length >= self.context_size:
new_cache_start = total_input_length - self.context_size
new_cache = input_with_context[:, :, new_cache_start:]
else:
# If we have less than context_size samples, keep everything
new_cache = input_with_context
if debug:
print(f"[DEBUG] New cache shape: {new_cache.shape}")
cache.set(self.layer_id, sample_indices, new_cache)
return output
def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
"""Standard forward pass without streaming"""
B, C, T = x.shape
kernel_size = self.kernel_size
stride = self.stride
dilation = self.dilation
padding_total = self.padding_total
# Compute extra padding for stride alignment
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
if debug:
print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}, padding_total={padding_total}, extra_padding={extra_padding}")
if self.causal:
# Left padding for causal
if self.pad_mode == 'constant':
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode, value=0)
else:
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
else:
# Symmetric padding for non-causal
padding_right = padding_total // 2
padding_left = padding_total - padding_right
x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
if debug:
print(f"[DEBUG NON-STREAMING] After padding: {x.shape}")
output = self.conv(x)
if debug:
print(f"[DEBUG NON-STREAMING] Output shape: {output.shape}")
return output
class SConvTranspose1d(nn.Module):
"""ConvTranspose1d with built-in handling of asymmetric or causal padding and normalization."""
def __init__(self, in_channels: int, out_channels: int,
kernel_size: int, stride: int = 1, causal: bool = False,
norm: str = 'none', trim_right_ratio: float = 1.,
norm_kwargs: tp.Dict[str, tp.Any] = {}, bias: bool = True):
super().__init__()
self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
causal=causal, norm=norm, norm_kwargs=norm_kwargs, bias=bias)
self.causal = causal
self.trim_right_ratio = trim_right_ratio
assert self.causal or self.trim_right_ratio == 1., \
"`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.
# Store configuration
self.kernel_size = kernel_size
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
# For transposed convolution, padding calculation is different
self.padding_total = kernel_size - stride
# For streaming, we need to keep track of input history
# Transposed conv needs to see multiple input samples to produce correct output
self.context_size = kernel_size - 1
# Create a unique layer ID for cache management
self._layer_id = None
@property
def layer_id(self):
if self._layer_id is None:
self._layer_id = f"sconvtr1d_{id(self)}"
return self._layer_id
def forward(self, x: torch.Tensor,
cache: Optional[VibeVoiceTokenizerStreamingCache] = None,
sample_indices: Optional[torch.Tensor] = None,
use_cache: bool = False,
debug: bool = False) -> torch.Tensor:
"""
Forward pass with optional streaming support via cache.
"""
B, C, T = x.shape
# Non-streaming mode
if not use_cache or cache is None:
return self._forward_non_streaming(x, debug=debug)
# Streaming mode
assert sample_indices is not None, "sample_indices must be provided for streaming mode"
assert len(sample_indices) == B, "sample_indices must match batch size"
return self._forward_streaming(x, cache, sample_indices, debug)
def _forward_streaming(self, x: torch.Tensor,
cache: VibeVoiceTokenizerStreamingCache,
sample_indices: torch.Tensor,
debug: bool = False) -> torch.Tensor:
"""Streaming forward pass with cache operations kept separate from compiled code"""
B, C, T = x.shape
# Cache operations (not compiled)
cached_input = cache.get(self.layer_id, sample_indices)
if cached_input is None:
# First chunk - no history yet
cached_input = torch.zeros(B, C, 0, device=x.device, dtype=x.dtype)
if debug:
print(f"[DEBUG] Initialized empty cache for transposed conv")
# Concatenate cached input with new input
full_input = torch.cat([cached_input, x], dim=2)
if debug:
print(f"[DEBUG] Input shape: {x.shape}, Cache shape: {cached_input.shape}, Combined: {full_input.shape}")
# First chunk or debug mode - use uncompiled version
full_output = self.convtr(full_input)
if debug:
print(f"[DEBUG] Full transposed conv output shape: {full_output.shape}")
# Calculate padding to remove
if self.causal:
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
padding_left = self.padding_total - padding_right
else:
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
# Remove padding
if padding_left + padding_right > 0:
full_output = unpad1d(full_output, (padding_left, padding_right))
if debug:
print(f"[DEBUG] After unpadding: {full_output.shape}")
# Determine which part of the output corresponds to the new input
if cached_input.shape[2] == 0:
# First chunk - return all output
output = full_output
else:
# Subsequent chunks - return only the new output
expected_new_output = T * self.stride
# Take the last expected_new_output samples
if full_output.shape[2] >= expected_new_output:
output = full_output[:, :, -expected_new_output:]
else:
output = full_output
if debug:
print(f"[DEBUG] Final streaming output shape: {output.shape}")
# Update cache
if full_input.shape[2] > self.context_size:
new_cache = full_input[:, :, -self.context_size:]
else:
new_cache = full_input
if debug:
print(f"[DEBUG] New cache shape: {new_cache.shape}")
cache.set(self.layer_id, sample_indices, new_cache)
return output
def _forward_non_streaming(self, x: torch.Tensor, debug: bool = False) -> torch.Tensor:
"""Standard forward pass without streaming"""
if debug:
print(f"[DEBUG NON-STREAMING] Input shape: {x.shape}")
# Apply transposed convolution
y = self.convtr(x)
if debug:
print(f"[DEBUG NON-STREAMING] After transposed conv: {y.shape}")
# Calculate and remove padding
if self.causal:
padding_right = math.ceil(self.padding_total * self.trim_right_ratio)
padding_left = self.padding_total - padding_right
else:
padding_right = self.padding_total // 2
padding_left = self.padding_total - padding_right
if padding_left + padding_right > 0:
y = unpad1d(y, (padding_left, padding_right))
if debug:
print(f"[DEBUG NON-STREAMING] Final output shape: {y.shape}")
return y
# FFN
class FFN(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
bias=False,
):
super().__init__()
self.embed_dim = embed_dim
self.linear1 = nn.Linear(self.embed_dim, ffn_dim, bias=bias)
self.gelu = ACT2FN["gelu"]
self.linear2 = nn.Linear(ffn_dim, self.embed_dim, bias=bias)
def forward(self, x):
x = self.linear1(x)
x = self.gelu(x)
x = self.linear2(x)
return x
class Convlayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_mode='zeros',
norm='weight_norm',
causal=True,
):
super().__init__()
self.conv = SConv1d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation,
groups=groups, bias=bias, pad_mode=pad_mode, norm=norm, causal=causal)
def forward(self, x):
return self.conv(x)
class Block1D(nn.Module):
def __init__(self, dim, kernel_size=7, drop_path=0., mixer_layer='conv',
layer_scale_init_value=1e-6, **kwargs):
super().__init__()
if kwargs.get('layernorm', 'LN') == 'LN':
self.norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
self.ffn_norm = ConvLayerNorm(dim, eps=kwargs.get('eps', 1e-6))
elif kwargs.get('layernorm', 'RMSNorm') == 'RMSNorm':
self.norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
self.ffn_norm = ConvRMSNorm(dim, eps=kwargs.get('eps', 1e-6))
if mixer_layer == 'conv':
self.mixer = Convlayer(dim, dim, groups=kwargs.get('groups', 1),
kernel_size=kernel_size,
pad_mode=kwargs.get('pad_mode', 'reflect'),
norm=kwargs.get('norm', 'none'),
causal=kwargs.get('causal', True),
bias=kwargs.get('bias', True),
)
elif mixer_layer == 'depthwise_conv':
self.mixer = Convlayer(dim, dim, groups=dim,
kernel_size=kernel_size,
pad_mode=kwargs.get('pad_mode', 'reflect'),
norm=kwargs.get('norm', 'none'),
causal=kwargs.get('causal', True),
bias=kwargs.get('bias', True),
)
else:
raise ValueError(f"Unsupported mixer layer: {mixer_layer}")
self.ffn = FFN(
dim,
kwargs.get('ffn_expansion', 4) * dim,
bias=kwargs.get('bias', False),
)
self.drop_path = nn.Identity() if drop_path <= 0. else nn.modules.DropPath(drop_path)
if layer_scale_init_value > 0:
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
self.ffn_gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
else:
self.gamma = None
self.ffn_gamma = None
def forward(self, x):
# mixer
residual = x
x = self.norm(x)
x = self.mixer(x)
if self.gamma is not None:
x = x * self.gamma.unsqueeze(-1)
x = residual + self.drop_path(x)
# ffn
residual = x
x = self.ffn_norm(x)
x = x.permute(0, 2, 1)
x = self.ffn(x)
x = x.permute(0, 2, 1)
if self.ffn_gamma is not None:
x = x * self.ffn_gamma.unsqueeze(-1)
x = residual + self.drop_path(x)
return x
class TokenizerEncoder(nn.Module):
"""
Encoder component for the VibeVoice tokenizer that converts audio to latent representations.
Args:
config: Configuration object with model parameters
"""
def __init__(self, config):
super().__init__()
# Extract parameters from config
self.channels = config.channels
self.dimension = config.dimension
self.n_filters = config.n_filters
self.ratios = list(reversed(config.ratios))
self.depths = config.depths
self.n_residual_layers = getattr(config, "n_residual_layers", 1)
self.hop_length = np.prod(self.ratios)
self.causal = config.causal
# Additional config parameters with defaults
kernel_size = getattr(config, "kernel_size", 7)
last_kernel_size = getattr(config, "last_kernel_size", 7)
norm = getattr(config, "norm", "none")
norm_params = getattr(config, "norm_params", {})
pad_mode = getattr(config, "pad_mode", "reflect")
bias = getattr(config, "bias", True)
layernorm = getattr(config, "layernorm", "LN")
layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
drop_path_rate = getattr(config, "drop_path_rate", 0.0)
mixer_layer = getattr(config, "mixer_layer", "conv")
layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
disable_last_norm = getattr(config, "disable_last_norm", False)
# determine the norm type based on layernorm
if layernorm == 'LN':
norm_type = ConvLayerNorm
elif layernorm == 'RMSNorm':
norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
else:
raise ValueError(f"Unsupported norm type: {layernorm}")
# stem and intermediate downsampling conv layers
stem = nn.Sequential(
SConv1d(self.channels, self.n_filters, kernel_size, norm=norm, norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
)
self.downsample_layers = nn.ModuleList()
self.downsample_layers.append(stem)
for i in range(len(self.ratios)):
in_ch = self.n_filters * (2 ** i)
out_ch = self.n_filters * (2 ** (i + 1))
downsample_layer = nn.Sequential(
SConv1d(in_ch, out_ch, kernel_size=self.ratios[i] * 2, stride=self.ratios[i], causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
)
self.downsample_layers.append(downsample_layer)
# configure the transformer blocks
layer_type = partial(
Block1D,
mixer_layer=mixer_layer,
layernorm=layernorm,
eps=layernorm_eps,
causal=self.causal,
pad_mode=pad_mode,
norm=norm,
bias=bias,
layer_scale_init_value=layer_scale_init_value,
)
self.stages = nn.ModuleList()
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(len(self.depths)):
in_ch = self.n_filters * (2 ** i)
stage = nn.Sequential(
*[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
)
self.stages.append(stage)
cur += self.depths[i]
if not disable_last_norm:
self.norm = norm_type(in_ch, eps=layernorm_eps)
else:
self.norm = nn.Identity()
self.head = SConv1d(in_ch, self.dimension, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
for i in range(len(self.depths)):
# Apply downsampling
for layer in self.downsample_layers[i]:
if isinstance(layer, SConv1d):
x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
else:
x = layer(x)
# Apply stage (Block1D contains Convlayer which contains SConv1d)
for block in self.stages[i]:
if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
# Block1D forward with cache support
residual = x
x = block.norm(x)
x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
if block.gamma is not None:
x = x * block.gamma.unsqueeze(-1)
x = residual + x
# FFN part
residual = x
x = block.ffn_norm(x)
x = x.permute(0, 2, 1)
x = block.ffn(x)
x = x.permute(0, 2, 1)
if block.ffn_gamma is not None:
x = x * block.ffn_gamma.unsqueeze(-1)
x = residual + x
else:
x = block(x)
return self.norm(x)
def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return x
class TokenizerDecoder(nn.Module):
"""
Decoder component for the VibeVoice tokenizer that converts latent representations back to audio.
Args:
config: Configuration object with model parameters
"""
def __init__(self, config):
super().__init__()
# Extract parameters from config
self.dimension = config.dimension
self.channels = config.channels
self.n_filters = config.n_filters
self.ratios = config.ratios
# IMPORTANT CHANGE: Don't reverse depths again since they're already reversed in VibeVoiceAcousticTokenizerModel
self.depths = config.depths # Changed from list(reversed(config.depths))
self.n_residual_layers = getattr(config, "n_residual_layers", 1)
self.hop_length = np.prod(self.ratios)
self.causal = config.causal
# Additional config parameters with defaults
kernel_size = getattr(config, "kernel_size", 7)
last_kernel_size = getattr(config, "last_kernel_size", 7)
norm = getattr(config, "norm", "none")
norm_params = getattr(config, "norm_params", {})
pad_mode = getattr(config, "pad_mode", "reflect")
bias = getattr(config, "bias", True)
layernorm = getattr(config, "layernorm", "LN")
layernorm_eps = getattr(config, "layernorm_eps", 1e-6)
trim_right_ratio = getattr(config, "trim_right_ratio", 1.0)
layernorm_elementwise_affine = getattr(config, "layernorm_elementwise_affine", True)
drop_path_rate = getattr(config, "drop_path_rate", 0.0)
mixer_layer = getattr(config, "mixer_layer", "conv")
layer_scale_init_value = getattr(config, "layer_scale_init_value", 0)
disable_last_norm = getattr(config, "disable_last_norm", False)
# determine the norm type based on layernorm
if layernorm == 'LN':
norm_type = ConvLayerNorm
elif layernorm == 'RMSNorm':
norm_type = partial(ConvRMSNorm, elementwise_affine=layernorm_elementwise_affine)
else:
raise ValueError(f"Unsupported norm type: {layernorm}")
# stem and upsampling layers
stem = nn.Sequential(
SConv1d(self.dimension, self.n_filters * 2 ** (len(self.depths) - 1), kernel_size, norm=norm,
norm_kwargs=norm_params, causal=self.causal, pad_mode=pad_mode, bias=bias),
)
self.upsample_layers = nn.ModuleList()
self.upsample_layers.append(stem)
for i in range(len(self.ratios)):
in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
out_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i - 1))
upsample_layer = nn.Sequential(
SConvTranspose1d(in_ch, out_ch,
kernel_size=self.ratios[i] * 2, stride=self.ratios[i],
norm=norm, norm_kwargs=norm_params, bias=bias,
causal=self.causal, trim_right_ratio=trim_right_ratio),
)
self.upsample_layers.append(upsample_layer)
# configure transformer blocks
layer_type = partial(
Block1D,
mixer_layer=mixer_layer,
layernorm=layernorm,
eps=layernorm_eps,
causal=self.causal,
pad_mode=pad_mode,
norm=norm,
bias=bias,
layer_scale_init_value=layer_scale_init_value,
)
self.stages = nn.ModuleList()
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
# Create stages in the same order as the original model
for i in range(len(self.depths)):
in_ch = self.n_filters * (2 ** (len(self.depths) - 1 - i))
stage = nn.Sequential(
*[layer_type(dim=in_ch, drop_path=dp_rates[cur + j]) for j in range(self.depths[i])]
)
self.stages.append(stage)
cur += self.depths[i]
if not disable_last_norm:
self.norm = norm_type(in_ch, eps=layernorm_eps)
else:
self.norm = nn.Identity()
self.head = SConv1d(in_ch, self.channels, kernel_size=last_kernel_size, causal=self.causal, pad_mode=pad_mode, norm=norm, bias=bias)
def forward_features(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
for i in range(len(self.depths)):
# Apply upsampling
for layer in self.upsample_layers[i]:
if isinstance(layer, (SConv1d, SConvTranspose1d)):
x = layer(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
else:
x = layer(x)
# Apply stage (Block1D contains Convlayer which contains SConv1d)
for block in self.stages[i]:
if hasattr(block, 'mixer') and hasattr(block.mixer, 'conv') and isinstance(block.mixer.conv, SConv1d):
# Block1D forward with cache support
residual = x
x = block.norm(x)
x = block.mixer.conv(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
if block.gamma is not None:
x = x * block.gamma.unsqueeze(-1)
x = residual + x
# FFN part
residual = x
x = block.ffn_norm(x)
x = x.permute(0, 2, 1)
x = block.ffn(x)
x = x.permute(0, 2, 1)
if block.ffn_gamma is not None:
x = x * block.ffn_gamma.unsqueeze(-1)
x = residual + x
else:
x = block(x)
return self.norm(x)
def forward(self, x, cache=None, sample_indices=None, use_cache=False, debug=False):
x = self.forward_features(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
x = self.head(x, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return x
@dataclass
class VibeVoiceTokenizerEncoderOutput:
"""
Output of VibeVoice tokenizer encoder, representing a Gaussian distribution with fixed variance.
Args:
mean (`torch.FloatTensor`): The mean parameters of the distribution.
std (`float` or `torch.FloatTensor`): Fixed standard deviation value.
"""
mean: torch.Tensor
std: Optional[Union[float, torch.Tensor]] = None
def sample(self, dist_type='fix'):
"""
Sample from the distribution.
Args:
dist_type (`str`): Sampling method, either 'fix' or 'gaussian'.
Returns:
`torch.FloatTensor`: Sampled values.
`torch.FloatTensor` (optional): Standard deviation used (only when dist_type='gaussian').
"""
if dist_type == 'fix':
x = self.mean + self.std * torch.randn_like(self.mean)
return x, self.std
elif dist_type == 'gaussian':
batch_size = self.mean.size(0)
value = self.std / 0.8
std = torch.randn(batch_size, device=self.mean.device, dtype=self.mean.dtype) * value
while std.dim() < self.mean.dim():
std = std.unsqueeze(-1)
x = self.mean + std * torch.randn_like(self.mean)
return x, std
else:
return self.mean, self.std
def kl(self):
"""Compute KL divergence between this distribution and a standard normal."""
target = torch.zeros_like(self.mean)
return F.mse_loss(self.mean, target, reduction='none')
def mode(self):
"""Return the distribution mode (which is the mean for Gaussian)."""
return self.mean
class VibeVoiceAcousticTokenizerModel(PreTrainedModel):
"""VibeVoice speech tokenizer model combining encoder and decoder for acoustic tokens"""
config_class = VibeVoiceAcousticTokenizerConfig
base_model_prefix = "vibevoice_acoustic_tokenizer"
_supports_flash_attn_2 = True
_supports_sdpa = True
_no_split_modules = ["TokenizerEncoder", "TokenizerDecoder"]
def __init__(self, config):
super().__init__(config)
self.register_buffer('fix_std', torch.tensor(config.fix_std), persistent=False)
self.std_dist_type = getattr(config, "std_dist_type", "fix")
# Parse encoder depths
if isinstance(config.encoder_depths, str):
encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
else:
encoder_depths = config.encoder_depths
# Parse decoder depths if provided
if config.decoder_depths is not None and isinstance(config.decoder_depths, str):
decoder_depths = [int(d) for d in config.decoder_depths.split('-')]
else:
# Default: use reversed encoder depths if decoder_depths is None
decoder_depths = list(reversed(encoder_depths))
# Create encoder config
encoder_config = copy.deepcopy(config)
encoder_config.dimension = config.vae_dim
encoder_config.n_filters = config.encoder_n_filters
encoder_config.ratios = config.encoder_ratios
encoder_config.depths = encoder_depths
encoder_config.norm = config.conv_norm
encoder_config.pad_mode = config.pad_mode
encoder_config.bias = config.conv_bias
encoder_config.layernorm_eps = config.layernorm_eps
encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
encoder_config.mixer_layer = config.mixer_layer
encoder_config.layer_scale_init_value = config.layer_scale_init_value
encoder_config.disable_last_norm = config.disable_last_norm
# Create decoder config
decoder_config = copy.deepcopy(config)
decoder_config.dimension = config.vae_dim
decoder_config.n_filters = config.decoder_n_filters
decoder_config.ratios = config.decoder_ratios
decoder_config.depths = decoder_depths
decoder_config.norm = config.conv_norm
decoder_config.pad_mode = config.pad_mode
decoder_config.bias = config.conv_bias
decoder_config.layernorm_eps = config.layernorm_eps
decoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
decoder_config.mixer_layer = config.mixer_layer
decoder_config.layer_scale_init_value = config.layer_scale_init_value
decoder_config.disable_last_norm = config.disable_last_norm
# Initialize encoder and decoder
self.encoder = TokenizerEncoder(encoder_config)
self.decoder = TokenizerDecoder(decoder_config)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
"""Initialize weights for the model"""
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv1d):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
@torch.no_grad()
def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Convert audio to latent representations"""
latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1), std=self.fix_std)
@torch.no_grad()
def sampling(self, encoder_output, dist_type=None):
"""Sample from the encoder output distribution"""
dist_type = dist_type or self.std_dist_type
if dist_type == 'fix':
return encoder_output.sample(dist_type='fix')
elif dist_type == 'gaussian':
return encoder_output.sample(dist_type='gaussian')
else:
raise ValueError(f"Unsupported dist_type: {dist_type}, expected 'fix' or 'gaussian'")
@torch.no_grad()
def decode(self, latents, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Convert latent representations back to audio"""
if latents.shape[1] == self.config.vae_dim:
pass
else:
latents = latents.permute(0, 2, 1)
audio = self.decoder(latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return audio
def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Full forward pass: encode audio to latents, then decode back to audio"""
encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
sampled_latents, _ = self.sampling(encoder_output)
reconstructed = self.decode(sampled_latents, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return reconstructed, sampled_latents
class VibeVoiceSemanticTokenizerModel(PreTrainedModel):
"""VibeVoice speech tokenizer model with only encoder for semantic tokens"""
config_class = VibeVoiceSemanticTokenizerConfig
base_model_prefix = "vibevoice_semantic_tokenizer"
_supports_flash_attn_2 = True
_supports_sdpa = True
_no_split_modules = ["TokenizerEncoder"]
def __init__(self, config):
super().__init__(config)
# Parse encoder depths
if isinstance(config.encoder_depths, str):
encoder_depths = [int(d) for d in config.encoder_depths.split('-')]
else:
encoder_depths = config.encoder_depths
# Create encoder config
encoder_config = copy.deepcopy(config)
encoder_config.dimension = config.vae_dim
encoder_config.n_filters = config.encoder_n_filters
encoder_config.ratios = config.encoder_ratios
encoder_config.depths = encoder_depths
encoder_config.norm = config.conv_norm
encoder_config.pad_mode = config.pad_mode
encoder_config.bias = config.conv_bias
encoder_config.layernorm_eps = config.layernorm_eps
encoder_config.layernorm_elementwise_affine = config.layernorm_elementwise_affine
encoder_config.mixer_layer = config.mixer_layer
encoder_config.layer_scale_init_value = config.layer_scale_init_value
encoder_config.disable_last_norm = config.disable_last_norm
# Initialize encoder and decoder
self.encoder = TokenizerEncoder(encoder_config)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
"""Initialize weights for the model"""
if isinstance(module, nn.Linear):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Conv1d):
nn.init.normal_(module.weight, std=self.config.weight_init_value)
if module.bias is not None:
nn.init.zeros_(module.bias)
@torch.no_grad()
def encode(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Convert audio to latent representations"""
latents = self.encoder(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
return VibeVoiceTokenizerEncoderOutput(mean=latents.permute(0, 2, 1))
@torch.no_grad()
def sampling(self, encoder_output, dist_type=None):
"""Sample from the encoder output distribution"""
return encoder_output.sample(dist_type='none')
def forward(self, audio, cache=None, sample_indices=None, use_cache=False, debug=False):
"""Full forward pass: encode audio to latents, then decode back to audio"""
encoder_output = self.encode(audio, cache=cache, sample_indices=sample_indices, use_cache=use_cache, debug=debug)
sampled_latents, _ = self.sampling(encoder_output, dist_type='none')
return None, sampled_latents
AutoModel.register(VibeVoiceAcousticTokenizerConfig, VibeVoiceAcousticTokenizerModel)
AutoModel.register(VibeVoiceSemanticTokenizerConfig, VibeVoiceSemanticTokenizerModel)
__all__ = [
"VibeVoiceTokenizerStreamingCache",
"VibeVoiceAcousticTokenizerModel",
"VibeVoiceSemanticTokenizerModel",
]