""" Gradio demo for UI‑TARS 1.5‑7B (image‑text‑to‑text) on Hugging Face Spaces. Save this file as **app.py** and add a *requirements.txt* with the packages listed below. Then create a new **Python** Space, upload both files and commit — the Space will build and serve the app automatically. requirements.txt (suggested versions) ------------------------------------- transformers==4.41.0 accelerate>=0.29.0 torch>=2.2 sentencepiece # needed for many multilingual models bitsandbytes # optional: enables 4‑bit quantization if Space has GPU pillow gradio>=4.33 """ from __future__ import annotations from typing import List, Dict, Any import gradio as gr from PIL import Image from transformers import pipeline import base64 def load_model(): """Load the UI‑TARS multimodal pipeline once at startup.""" print("Loading UI‑TARS 1.5‑7B… this may take a while the first time.") return pipeline( "image-text-to-text", model="ByteDance-Seed/UI-TARS-1.5-7B", device_map="auto", # automatically use GPU if available ) pipe = load_model() def answer_question(image: Image.Image, question: str) -> str: """Run the model on the provided image & question and return its answer.""" if image is None or not question.strip(): return "Please supply **both** an image and a question." base64_image = base64.b64encode(image.tobytes()).decode('utf-8') # Compose a messages list in the expected multimodal chat format. messages: List[Dict[str, Any]] = [ { "role": "user", "content": [ {"type": "text", "text": f"You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. \n\n## Output Format\n```\nThought: ...\nAction: ...\n```\n\n## Action Space\n\nclick(start_box='<|box_start|>(x1, y1)<|box_end|>')\nleft_double(start_box='<|box_start|>(x1, y1)<|box_end|>')\nright_single(start_box='<|box_start|>(x1, y1)<|box_end|>')\ndrag(start_box='<|box_start|>(x1, y1)<|box_end|>', end_box='<|box_start|>(x3, y3)<|box_end|>')\nhotkey(key='')\ntype(content='') #If you want to submit your input, use \"\\n\" at the end of `content`.\nscroll(start_box='<|box_start|>(x1, y1)<|box_end|>', direction='down or up or right or left')\nwait() #Sleep for 5s and take a screenshot to check for any changes.\nfinished(content='xxx') # Use escape characters \\', \\\", and \\n in content part to ensure we can parse the content in normal python string format.\n\n\n## Note\n- Use Chinese in `Thought` part.\n- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.\n\n## User Instruction\n{question.strip()}"}, ], }, { "role":"user", "content": [ {"type": "image_url", "image_url": base64_image}, ], } ] # The pipeline returns a list with one dict when `messages` is passed via # the `text` keyword. We extract the generated text robustly. outputs = pipe(text=messages) if isinstance(outputs, list): first = outputs[0] if isinstance(first, dict) and "generated_text" in first: return first["generated_text"].strip() return str(first) return str(outputs) demo = gr.Interface( fn=answer_question, inputs=[ gr.Image(type="pil", label="Upload image"), gr.Textbox(label="Ask a question about the image", placeholder="e.g. What animal is on the candy?"), ], outputs=gr.Textbox(label="UI‑TARS answer"), title="UI‑TARS 1.5‑7B – Visual Q&A", description=( "Upload an image and ask a question. The **UI‑TARS 1.5‑7B** model will " "answer based on the visual content. Runs completely on‑device in this Space." ), examples=[ [ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG", "What animal is on the candy?", ] ], cache_examples=True, allow_flagging="never", ) if __name__ == "__main__": # Spaces automatically call `demo.launch()`, but running locally this # guard lets you execute `python app.py` for quick tests. demo.launch()