Subbareddy1's picture
Fix: use AutoImageProcessor instead of SwinFeatureExtractor
eec3199
import gradio as gr
import torch
from torchvision import transforms
from PIL import Image
from transformers import SwinForImageClassification, AutoImageProcessor
import os
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load image processor
processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
# Load model
model = SwinForImageClassification.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
num_labels=2,
ignore_mismatched_sizes=True
)
model.load_state_dict(torch.load("model/oral_cancer_swin_new.pth", map_location=device))
model.to(device)
model.eval()
labels = ["Cancer", "Non-Cancer"]
def predict(image):
inputs = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
pred = torch.argmax(outputs.logits, dim=1).item()
return labels[pred]
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs="text",
title="Oral Cancer Detection",
description="Upload a tongue image to detect whether it shows signs of Cancer or not."
)
demo.launch()