File size: 24,636 Bytes
da0602d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618fb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0602d
 
8b68d4f
da0602d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import streamlit as st
import pandas as pd
import requests
import json
import base64
import plotly.express as px
import plotly.graph_objects as go
import os
from io import BytesIO
from datetime import datetime

# Set page configuration
st.set_page_config(
    page_title="News Summarization & Analysis",
    page_icon="πŸ“°",
    layout="wide",
    initial_sidebar_state="expanded"
)
import logging
from flask import Flask

logging.basicConfig(level=logging.INFO)

app = Flask(__name__)

@app.route('/')
def home():
    logging.info("Home endpoint was reached.")
    return "Hello, World!"

if __name__ == '__main__':
    logging.info("Starting the Flask application.")
    app.run(host='0.0.0.0', port=7860)


# API endpoint (Flask backend)
API_URL = "http://0.0.0.0:7860"

def get_company_news(company_name):
    """Fetch news articles for a given company via API"""
    try:
        response = requests.get(f"{API_URL}/news/{company_name}")
        if response.status_code == 200:
            return response.json()
        else:
            st.error(f"Error fetching news: {response.text}")
            return None
    except Exception as e:
        st.error(f"API connection error: {str(e)}")
        return None

def get_analysis(company_name, articles):
    """Get sentiment analysis and comparative analysis via API"""
    try:
        response = requests.post(
            f"{API_URL}/analyze", 
            json={
                "company": company_name,
                "articles": articles
            }
        )
        if response.status_code == 200:
            return response.json()
        else:
            st.error(f"Error analyzing content: {response.text}")
            return None
    except Exception as e:
        st.error(f"API connection error: {str(e)}")
        return None

def get_tts(text, language='hi'):
    """Get TTS audio in the specified language via API"""
    try:
        response = requests.post(
            f"{API_URL}/tts", 
            json={
                "text": text,
                "language": language
            }
        )
        if response.status_code == 200:
            return response.content, language
        else:
            st.error(f"Error generating speech: {response.text}")
            return None, language
    except Exception as e:
        st.error(f"API connection error: {str(e)}")
        return None, language

def create_audio_player(audio_bytes):
    """Create an HTML audio player for the TTS audio"""
    audio_base64 = base64.b64encode(audio_bytes).decode()
    audio_html = f"""
        <audio controls>
            <source src="data:audio/mp3;base64,{audio_base64}" type="audio/mp3">
            Your browser does not support the audio element.
        </audio>
    """
    return audio_html

def display_article_details(articles):
    """Display detailed information about each article in a card layout"""
    st.markdown("""
    <style>
    .article-card {
        background-color: #f9f9f9;
        border-radius: 10px;
        padding: 20px;
        margin-bottom: 20px;
        border-left: 5px solid #4CAF50;
        box-shadow: 0 4px 8px rgba(0,0,0,0.1);
    }
    .article-negative {
        border-left: 5px solid #F44336;
    }
    .article-neutral {
        border-left: 5px solid #9E9E9E;
    }
    .article-title {
        font-size: 18px;
        font-weight: bold;
        margin-bottom: 10px;
    }
    .article-meta {
        color: #666;
        font-size: 14px;
        margin-bottom: 10px;
    }
    .article-summary {
        margin-bottom: 15px;
    }
    .article-sentiment {
        display: inline-block;
        padding: 5px 10px;
        border-radius: 20px;
        font-size: 14px;
        margin-right: 10px;
    }
    .sentiment-positive {
        background-color: rgba(76, 175, 80, 0.2);
        color: #2E7D32;
    }
    .sentiment-negative {
        background-color: rgba(244, 67, 54, 0.2);
        color: #C62828;
    }
    .sentiment-neutral {
        background-color: rgba(158, 158, 158, 0.2);
        color: #616161;
    }
    .topic-tag {
        display: inline-block;
        background-color: #E0E0E0;
        padding: 3px 10px;
        border-radius: 15px;
        margin-right: 8px;
        margin-bottom: 8px;
        font-size: 12px;
    }
    </style>
    """, unsafe_allow_html=True)
    
    cols = st.columns(1)
    
    for i, article in enumerate(articles):
        sentiment = article['Sentiment']
        sentiment_class = ""
        tag_class = ""
        
        if sentiment == "Positive":
            sentiment_class = "article-positive"
            tag_class = "sentiment-positive"
        elif sentiment == "Negative":
            sentiment_class = "article-negative"
            tag_class = "sentiment-negative"
        else:
            sentiment_class = "article-neutral"
            tag_class = "sentiment-neutral"
        
        article_html = f"""
        <div class="article-card {sentiment_class}">
            <div class="article-title">{article['Title']}</div>
            <div class="article-meta">
                Source: {article.get('Source', 'Unknown')} | 
                Date: {article.get('Date', 'N/A')}
            </div>
            <div class="article-summary">{article['Summary']}</div>
            <div class="article-sentiment {tag_class}">{sentiment}</div>
        """
        
        # Add topics as tags
        if 'Topics' in article and article['Topics']:
            article_html += '<div class="article-topics">'
            for topic in article['Topics']:
                article_html += f'<span class="topic-tag">{topic}</span>'
            article_html += '</div>'
        
        article_html += f"""
            <div style="margin-top: 10px;">
                <a href="{article.get('URL', '#')}" target="_blank" style="text-decoration: none;">
                    <span style="color: #1E88E5;">Read original article β†’</span>
                </a>
            </div>
        </div>
        """
        
        cols[0].markdown(article_html, unsafe_allow_html=True)

def display_sentiment_distribution(analysis):
    """Display sentiment distribution chart with enhanced styling"""
    if 'Comparative Sentiment Score' in analysis and 'Sentiment Distribution' in analysis['Comparative Sentiment Score']:
        dist = analysis['Comparative Sentiment Score']['Sentiment Distribution']
        data = {
            'Sentiment': list(dist.keys()),
            'Count': list(dist.values())
        }
        df = pd.DataFrame(data)
        
        # Create color map
        color_map = {
            'Positive': '#4CAF50', 
            'Negative': '#F44336', 
            'Neutral': '#9E9E9E'
        }
        
        # Create a card container for the chart
        st.markdown("""
        <div style="background-color:white; padding:20px; border-radius:10px; box-shadow:0 4px 6px rgba(0,0,0,0.1); margin-bottom:20px;">
            <h3 style="margin-bottom:15px; border-bottom:1px solid #eee; padding-bottom:10px;">Sentiment Distribution</h3>
        </div>
        """, unsafe_allow_html=True)
        
        # Create pie chart for sentiment distribution
        labels = list(dist.keys())
        values = list(dist.values())
        colors = [color_map[label] for label in labels]
        
        # Create two columns for different chart types
        col1, col2 = st.columns(2)
        
        with col1:
            # Bar chart
            fig_bar = px.bar(
                df, 
                x='Sentiment', 
                y='Count',
                color='Sentiment',
                color_discrete_map=color_map,
                title="Sentiment Distribution (Bar Chart)"
            )
            fig_bar.update_layout(
                plot_bgcolor='rgba(0,0,0,0)',
                paper_bgcolor='rgba(0,0,0,0)',
                font=dict(size=14),
                margin=dict(l=20, r=20, t=40, b=20),
                height=350
            )
            st.plotly_chart(fig_bar, use_container_width=True)
            
        with col2:
            # Pie chart
            fig_pie = go.Figure(data=[go.Pie(
                labels=labels, 
                values=values,
                marker=dict(colors=colors),
                textinfo='percent+label',
                hole=.4
            )])
            fig_pie.update_layout(
                title_text="Sentiment Distribution (Pie Chart)",
                annotations=[dict(text='Sentiment', x=0.5, y=0.5, font_size=14, showarrow=False)],
                plot_bgcolor='rgba(0,0,0,0)',
                paper_bgcolor='rgba(0,0,0,0)',
                font=dict(size=14),
                margin=dict(l=20, r=20, t=40, b=20),
                height=350
            )
            st.plotly_chart(fig_pie, use_container_width=True)
            
        # Add a summary of the sentiment distribution
        total = sum(values)
        if total > 0:
            percentages = {label: (count/total*100) for label, count in zip(labels, values)}
            
            # Create a summary card
            summary_html = """
            <div style="background-color:#f8f9fa; padding:15px; border-radius:8px; margin-top:10px;">
                <h4 style="margin-bottom:10px;">Summary</h4>
                <p style="font-size:15px; line-height:1.5;">
            """
            
            for label in labels:
                if label in percentages:
                    color = color_map[label]
                    summary_html += f'<span style="color:{color}; font-weight:bold;">{label}</span>: {percentages[label]:.1f}% | '
            
            summary_html = summary_html.rstrip(' | ') + '</p></div>'
            st.markdown(summary_html, unsafe_allow_html=True)

def display_topic_analysis(analysis):
    """Display topic analysis visualization"""
    if 'Comparative Sentiment Score' in analysis and 'Topic Overlap' in analysis['Comparative Sentiment Score']:
        topic_data = analysis['Comparative Sentiment Score']['Topic Overlap']
        
        # Prepare data for visualization
        all_topics = set()
        if 'Common Topics' in topic_data:
            all_topics.update(topic_data['Common Topics'])
        
        for i in range(1, 11):  # Check for unique topics in each article
            key = f"Unique Topics in Article {i}"
            if key in topic_data and topic_data[key]:
                all_topics.update(topic_data[key])
        
        # Count topic occurrences across articles
        topic_counts = {}
        for topic in all_topics:
            count = 0
            if 'Common Topics' in topic_data and topic in topic_data['Common Topics']:
                count += len(analysis['Articles'])  # All articles have common topics
            
            for i in range(1, 11):
                key = f"Unique Topics in Article {i}"
                if key in topic_data and topic in topic_data[key]:
                    count += 1
                    
            topic_counts[topic] = count
            
        # Create DataFrame and visualization
        topic_df = pd.DataFrame({
            'Topic': list(topic_counts.keys()),
            'Occurrence': list(topic_counts.values())
        }).sort_values('Occurrence', ascending=False)
        
        fig = px.bar(
            topic_df,
            x='Topic',
            y='Occurrence',
            title="Topic Distribution Across Articles",
            color='Occurrence',
            color_continuous_scale=px.colors.sequential.Viridis
        )
        st.plotly_chart(fig, use_container_width=True)

def display_comparative_analysis(analysis):
    """Display comparative analysis details"""
    if 'Comparative Sentiment Score' in analysis and 'Coverage Differences' in analysis['Comparative Sentiment Score']:
        differences = analysis['Comparative Sentiment Score']['Coverage Differences']
        
        st.subheader("Comparative Analysis")
        for i, diff in enumerate(differences):
            with st.expander(f"Comparison {i+1}"):
                st.write(f"**Comparison**: {diff['Comparison']}")
                st.write(f"**Impact**: {diff['Impact']}")

# Main app layout with enhanced design and better readability
st.markdown("""
<style>
    .main-header {
        text-align: center;
        padding: 2rem 0;
        background: linear-gradient(to right, #2E7D32, #1565C0);
        color: white;
        border-radius: 10px;
        margin-bottom: 30px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .app-title {
        font-size: 36px;
        font-weight: bold;
        text-shadow: 1px 1px 3px rgba(0,0,0,0.3);
        margin-bottom: 15px;
    }
    .app-description {
        font-size: 18px;
        color: white;
        max-width: 800px;
        margin: 0 auto;
        line-height: 1.6;
        text-shadow: 0px 1px 2px rgba(0,0,0,0.2);
    }
    .benefits-container {
        display: flex;
        justify-content: center;
        gap: 20px;
        margin-top: 20px;
        flex-wrap: wrap;
    }
    .benefit-item {
        background-color: rgba(255,255,255,0.25);
        padding: 8px 15px;
        border-radius: 20px;
        font-size: 14px;
        font-weight: 500;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        text-shadow: 0px 1px 1px rgba(0,0,0,0.1);
    }
</style>

<div class="main-header">
    <div class="app-title">πŸ“° News Summarization & Sentiment Analysis</div>
    <p class="app-description">
        Analyze recent news articles about any company. Get sentiment analysis, topic extraction, 
        and multilingual text-to-speech summaries instantly in 10 different languages.
    </p>
    <div class="benefits-container">
        <div class="benefit-item">βœ… Real-time News Analysis</div>
        <div class="benefit-item">πŸ“Š Sentiment Visualization</div>
        <div class="benefit-item">πŸ” Topic Extraction</div>
        <div class="benefit-item">🎧 Multilingual Text-to-Speech</div>
    </div>
</div>
""", unsafe_allow_html=True)

# Input form with enhanced styling
st.markdown("""
<style>
    .search-container {
        background-color: white;
        padding: 25px;
        border-radius: 10px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.1);
        margin-bottom: 30px;
    }
    .search-title {
        font-size: 20px;
        font-weight: bold;
        margin-bottom: 15px;
        color: #333;
    }
    .search-description {
        color: #666;
        margin-bottom: 20px;
        font-size: 16px;
    }
</style>
<div class="search-container">
    <div class="search-title">πŸ” Search for Company News</div>
    <div class="search-description">
        Enter a company name below to analyze its recent news coverage.
        Try companies like Tesla, Apple, Microsoft, Google, or Amazon.
    </div>
</div>
""", unsafe_allow_html=True)

with st.form("search_form"):
    col1, col2 = st.columns([3, 1])
    with col1:
        company_name = st.text_input("Company Name", placeholder="Enter company name (e.g., Tesla)", label_visibility="collapsed")
    with col2:
        submit_button = st.form_submit_button("πŸ” Analyze News")
    
    # Add some example buttons below the form
    st.markdown("""
    <style>
        .example-row {
            display: flex;
            gap: 10px;
            margin-top: 10px;
            flex-wrap: wrap;
            justify-content: center;
        }
        .example-chip {
            background-color: #f0f2f6;
            border-radius: 20px;
            padding: 5px 15px;
            font-size: 12px;
            cursor: pointer;
            transition: all 0.2s;
        }
        .example-chip:hover {
            background-color: #4CAF50;
            color: white;
        }
    </style>
    <div style="text-align: center; margin-top: 10px; font-size: 12px; color: #666;">
        Try analyzing news for:
        <div class="example-row">
            <div class="example-chip">Tesla</div>
            <div class="example-chip">Apple</div>
            <div class="example-chip">Microsoft</div>
            <div class="example-chip">Google</div>
            <div class="example-chip">Amazon</div>
        </div>
    </div>
    """, unsafe_allow_html=True)

# Process form submission
if submit_button and company_name:
    with st.spinner(f"Fetching news articles about {company_name}..."):
        articles_data = get_company_news(company_name)
        
    if articles_data and 'articles' in articles_data and len(articles_data['articles']) > 0:
        articles = articles_data['articles']
        
        with st.spinner("Performing sentiment analysis..."):
            analysis_result = get_analysis(company_name, articles)
            
        if analysis_result:
            # Store complete analysis in session state
            st.session_state.analysis = analysis_result
            
            # Display summary and stats
            st.header(f"Analysis Results for {company_name}")
            
            # Create a nice header with company logo or icon
            company_icon = "🏒"  # Default company icon
            if company_name.lower() == "tesla":
                company_icon = "πŸš—"
            elif company_name.lower() == "apple":
                company_icon = "🍎"
            elif company_name.lower() == "microsoft":
                company_icon = "πŸ’»"
            elif company_name.lower() == "amazon":
                company_icon = "πŸ“¦"
            elif company_name.lower() == "google":
                company_icon = "πŸ”"
                
            st.markdown(f"""
            <div style="background-color:#f0f2f6; padding:20px; border-radius:10px; margin-bottom:20px;">
                <h1 style="text-align:center; margin-bottom:20px;">{company_icon} {company_name} News Analysis</h1>
                <p style="text-align:center; font-size:16px; color:#666;">
                    Analysis of {len(analysis_result['Articles'])} news articles | Generated on {datetime.now().strftime('%B %d, %Y')}
                </p>
            </div>
            """, unsafe_allow_html=True)
            
            # Display visualization tabs with custom styling
            st.markdown("""
            <style>
            .stTabs [data-baseweb="tab-list"] {
                gap: 8px;
            }
            .stTabs [data-baseweb="tab"] {
                border-radius: 4px 4px 0px 0px;
                padding: 10px 16px;
                background-color: #f0f2f6;
            }
            .stTabs [aria-selected="true"] {
                background-color: #4CAF50 !important;
                color: white !important;
            }
            </style>
            """, unsafe_allow_html=True)
            
            tab1, tab2, tab3, tab4 = st.tabs(["πŸ“Š Overview", "😊 Sentiment Analysis", "πŸ” Topic Analysis", "πŸ“° Article Details"])
            
            with tab1:
                # Create a card-style container for the summary
                st.markdown("""
                <div style="background-color:white; padding:25px; border-radius:10px; box-shadow:0 4px 6px rgba(0,0,0,0.1); margin-bottom:20px;">
                    <h3 style="margin-bottom:15px; border-bottom:1px solid #eee; padding-bottom:10px;">Executive Summary</h3>
                """, unsafe_allow_html=True)
                
                summary_text = analysis_result.get("Final Sentiment Analysis", "No summary available")
                st.markdown(f"<p style='font-size:16px; line-height:1.6;'>{summary_text}</p>", unsafe_allow_html=True)
                
                st.markdown("</div>", unsafe_allow_html=True)
                
                if "Final Sentiment Analysis" in analysis_result:
                    # Language selection for TTS
                    language_options = {
                        "hi": "Hindi",
                        "en": "English",
                        "es": "Spanish",
                        "fr": "French",
                        "de": "German",
                        "ja": "Japanese",
                        "zh-CN": "Chinese",
                        "ru": "Russian",
                        "ar": "Arabic",
                        "it": "Italian"
                    }
                    
                    selected_language = st.selectbox(
                        "Select Language for Text-to-Speech",
                        options=list(language_options.keys()),
                        format_func=lambda x: language_options[x],
                        index=0  # Default to Hindi
                    )
                    
                    with st.spinner(f"Generating {language_options[selected_language]} text-to-speech..."):
                        audio_bytes, language = get_tts(analysis_result["Final Sentiment Analysis"], selected_language)
                    
                    if audio_bytes:
                        st.markdown(f"""
                        <div style="background-color:white; padding:25px; border-radius:10px; box-shadow:0 4px 6px rgba(0,0,0,0.1);">
                            <h3 style="margin-bottom:15px; border-bottom:1px solid #eee; padding-bottom:10px;">
                                <span style="vertical-align:middle;">πŸ”Š</span> {language_options[language]} Text-to-Speech Summary
                            </h3>
                        """, unsafe_allow_html=True)
                        
                        st.markdown(create_audio_player(audio_bytes), unsafe_allow_html=True)
                        st.markdown("</div>", unsafe_allow_html=True)
            
            with tab2:
                st.subheader("Sentiment Distribution")
                display_sentiment_distribution(analysis_result)
                display_comparative_analysis(analysis_result)
                
            with tab3:
                st.subheader("Topic Analysis")
                display_topic_analysis(analysis_result)
                
            with tab4:
                st.subheader("Article Details")
                display_article_details(analysis_result['Articles'])
                
            # Display JSON output option
            st.subheader("Raw JSON Output")
            with st.expander("Show JSON"):
                st.json(analysis_result)
                
        else:
            st.error("Failed to perform analysis. Please try again.")
    else:
        st.warning(f"No news articles found for {company_name}. Please try another company name.")

# Footer with enhanced design and improved readability
st.markdown("""
<style>
    .footer {
        background: linear-gradient(to right, #2E7D32, #1565C0);
        padding: 30px 10px;
        color: white;
        border-radius: 10px;
        text-align: center;
        margin-top: 40px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .footer-content {
        max-width: 800px;
        margin: 0 auto;
    }
    .footer-title {
        font-size: 22px;
        margin-bottom: 15px;
        font-weight: bold;
        text-shadow: 1px 1px 2px rgba(0,0,0,0.3);
    }
    .footer-text {
        font-size: 15px;
        line-height: 1.6;
        margin-bottom: 15px;
        text-shadow: 0px 1px 1px rgba(0,0,0,0.2);
    }
    .footer-features {
        display: flex;
        justify-content: center;
        gap: 15px;
        margin: 20px 0;
        flex-wrap: wrap;
    }
    .footer-feature {
        background-color: rgba(255,255,255,0.25);
        padding: 8px 15px;
        border-radius: 20px;
        font-size: 14px;
        font-weight: 500;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        text-shadow: 0px 1px 1px rgba(0,0,0,0.1);
    }
    .footer-copyright {
        margin-top: 15px;
        font-size: 14px;
        opacity: 0.9;
        text-shadow: 0px 1px 1px rgba(0,0,0,0.1);
    }
</style>

<div class="footer">
    <div class="footer-content">
        <div class="footer-title">πŸ“° News Summarization & Analysis Application</div>
        <div class="footer-text">
            A powerful tool for analyzing news content, extracting sentiments, and generating insights.
            Get comprehensive analysis of any company's news coverage within seconds.
        </div>
        <div class="footer-features">
            <div class="footer-feature">⚑ Real-time News Extraction</div>
            <div class="footer-feature">πŸ“Š Sentiment Analysis</div>
            <div class="footer-feature">πŸ” Topic Analysis</div>
            <div class="footer-feature">🎧 Multilingual Text-to-Speech</div>
        </div>
        <div class="footer-copyright">Created with Streamlit β€’ {datetime.now().year}</div>
    </div>
</div>
""", unsafe_allow_html=True)