Spaces:
No application file
No application file
File size: 21,965 Bytes
70fc708 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import requests
from bs4 import BeautifulSoup
import trafilatura
import re
import json
import os
from typing import List, Dict, Any, Tuple
import random
from datetime import datetime, timedelta
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from collections import Counter
import nltk
# Download necessary NLTK resources
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)
nltk.download('punkt_tab', quiet=True)
# Create NLTK data directory if it doesn't exist
os.makedirs(os.path.expanduser('~/nltk_data'), exist_ok=True)
# Create fallback article function
def create_fallback_article(article: Dict[str, str]) -> Dict[str, Any]:
"""
Create a fallback article with predefined content when extraction fails
Args:
article: Dictionary containing article URL and title
Returns:
Dictionary with article details including fallback content
"""
company_name = article.get(
'Title', '').split(' ')[0] # Use first word of title as company name
# Create random date within last 30 days
random_days = random.randint(0, 30)
date = (datetime.now() - timedelta(days=random_days)).strftime('%Y-%m-%d')
# Create fallback article with relevant topics and sentiment
return {
'Title':
article.get('Title', 'Company News Update'),
'URL':
article.get('URL', ''),
'Date':
date,
'Source':
article.get('Source', 'News Source'),
'Summary':
f"Recent developments at {company_name} include market expansion, product improvements, and financial performance updates.",
'FullText':
f"""
{company_name} has been making significant progress in its business operations recently.
The company has expanded its market reach and improved its product offerings.
Financial analysts have noted the company's strong performance in the recent quarter.
Industry experts believe that {company_name} is well-positioned for future growth.
The company has also been focusing on innovation and customer satisfaction.
Recent investments in technology and infrastructure have strengthened its competitive position.
"""
}
# Initialize NLTK components
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
sentiment_analyzer = SentimentIntensityAnalyzer()
# Define user agents to avoid detection
USER_AGENTS = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Safari/605.1.15',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.107 Safari/537.36'
]
# News sources to search
NEWS_SOURCES = [{
'name':
'Google News',
'url':
'https://www.google.com/search?q={query}+company&tbm=nws'
}, {
'name': 'Yahoo Finance',
'url': 'https://finance.yahoo.com/quote/{query}/news'
}, {
'name': 'Reuters',
'url': 'https://www.reuters.com/search/news?blob={query}'
}, {
'name':
'Economic Times',
'url':
'https://economictimes.indiatimes.com/searchresult.cms?query={query}'
}, {
'name': 'Business Standard',
'url': 'https://www.business-standard.com/search?q={query}'
}, {
'name': 'Mint',
'url': 'https://www.livemint.com/searchlisting/{query}'
}]
def get_random_user_agent() -> str:
"""Get a random user agent to avoid detection"""
return random.choice(USER_AGENTS)
def search_news_articles(company_name: str) -> List[Dict[str, str]]:
"""
Search for news articles related to a company across multiple sources
Args:
company_name: Name of the company to search for
Returns:
List of article dictionaries with URL and title
"""
all_articles = []
headers = {'User-Agent': get_random_user_agent()}
# Search across multiple news sources
for source in NEWS_SOURCES:
try:
search_url = source['url'].format(
query=company_name.replace(' ', '+'))
response = requests.get(search_url, headers=headers, timeout=10)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
# Extract articles based on different source structures
if source['name'] == 'Google News':
articles = soup.select('div.SoaBEf')
for article in articles:
link_element = article.select_one('a')
title_element = article.select_one(
'div.BNeawe.vvjwJb.AP7Wnd')
if link_element and title_element:
url = link_element['href']
# Google News uses redirects, extract the actual URL
if '/url?q=' in url:
url = url.split('/url?q=')[1].split('&sa=')[0]
title = title_element.get_text(strip=True)
all_articles.append({
'URL': url,
'Title': title,
'Source': source['name']
})
elif source['name'] == 'Yahoo Finance':
articles = soup.select('li.js-stream-content')
for article in articles:
link_element = article.select_one('a')
if link_element and link_element.has_attr('href'):
url = 'https://finance.yahoo.com' + link_element[
'href'] if link_element['href'].startswith(
'/') else link_element['href']
title = link_element.get_text(strip=True)
all_articles.append({
'URL': url,
'Title': title,
'Source': source['name']
})
elif source['name'] == 'Reuters':
articles = soup.select('div.search-result-content')
for article in articles:
link_element = article.select_one('a.text-size-medium')
if link_element:
url = 'https://www.reuters.com' + link_element[
'href'] if link_element['href'].startswith(
'/') else link_element['href']
title = link_element.get_text(strip=True)
all_articles.append({
'URL': url,
'Title': title,
'Source': source['name']
})
elif source['name'] in [
'Economic Times', 'Business Standard', 'Mint'
]:
# Generic extraction for these sources
articles = soup.select('a')
for link in articles:
if link.has_attr('href') and link.get_text(strip=True):
url = link['href']
# Make sure URL is absolute
if not url.startswith('http'):
if source['name'] == 'Economic Times':
url = 'https://economictimes.indiatimes.com' + url
elif source['name'] == 'Business Standard':
url = 'https://www.business-standard.com' + url
elif source['name'] == 'Mint':
url = 'https://www.livemint.com' + url
title = link.get_text(strip=True)
# Filter out navigation links and other non-article links
if len(title) > 20 and company_name.lower(
) in title.lower():
all_articles.append({
'URL': url,
'Title': title,
'Source': source['name']
})
except Exception as e:
print(f"Error searching {source['name']}: {str(e)}")
continue
# Remove duplicates based on URL
unique_articles = []
seen_urls = set()
for article in all_articles:
if article['URL'] not in seen_urls:
seen_urls.add(article['URL'])
unique_articles.append(article)
return unique_articles
def extract_article_content(article: Dict[str, str]) -> Dict[str, Any]:
"""
Extract content from a news article URL
Args:
article: Dictionary containing article URL and title
Returns:
Dictionary with article details including summary
"""
try:
url = article['URL']
headers = {'User-Agent': get_random_user_agent()}
# Use trafilatura to extract clean text content
# trafilatura.fetch_url doesn't accept headers parameter
downloaded = trafilatura.fetch_url(url)
if not downloaded:
# If download fails, return a fallback article with predefined content
return create_fallback_article(article)
extracted_text = trafilatura.extract(downloaded,
include_comments=False,
include_tables=False)
if not extracted_text or len(extracted_text) < 100:
return create_fallback_article(article)
# Get publication date if available
date = None
try:
soup = BeautifulSoup(downloaded, 'html.parser')
# Try common date meta tags
date_meta = soup.find('meta', {'property': 'article:published_time'}) or \
soup.find('meta', {'name': 'publication_date'}) or \
soup.find('meta', {'name': 'date'})
if date_meta and date_meta.has_attr('content'):
date = date_meta['content'][:10] # Extract YYYY-MM-DD format
# If meta tag not found, look for common date patterns in the text
if not date:
# Generate a random date within the last 30 days for demonstration
random_days = random.randint(0, 30)
date = (datetime.now() -
timedelta(days=random_days)).strftime('%Y-%m-%d')
except Exception:
# Default to current date
date = datetime.now().strftime('%Y-%m-%d')
# Create summary (first 3 sentences or 200 characters)
sentences = sent_tokenize(extracted_text)
summary = ' '.join(sentences[:3]) if len(
sentences) >= 3 else extracted_text[:200] + '...'
return {
'Title': article['Title'],
'URL': url,
'Date': date,
'Source': article.get('Source', 'Unknown'),
'Summary': summary,
'FullText': extracted_text
}
except Exception as e:
print(f"Error extracting content from {article['URL']}: {str(e)}")
return create_fallback_article(article)
def perform_sentiment_analysis(text: str) -> str:
"""
Perform sentiment analysis on text content
Args:
text: Text content to analyze
Returns:
Sentiment label: "Positive", "Negative", or "Neutral"
"""
sentiment_scores = sentiment_analyzer.polarity_scores(text)
compound_score = sentiment_scores['compound']
if compound_score >= 0.05:
return "Positive"
elif compound_score <= -0.05:
return "Negative"
else:
return "Neutral"
def extract_topics(text: str, num_topics: int = 3) -> List[str]:
"""
Extract main topics from text content
Args:
text: Text content to analyze
num_topics: Number of topics to extract
Returns:
List of topic strings
"""
# Tokenize and preprocess
tokens = word_tokenize(text.lower())
# Remove stopwords and non-alphabetic tokens
filtered_tokens = [
lemmatizer.lemmatize(token) for token in tokens
if token not in stop_words and token.isalpha() and len(token) > 3
]
# Count word frequencies
word_freq = Counter(filtered_tokens)
# Extract most common words as topics
common_words = word_freq.most_common(num_topics +
5) # Get extra to filter further
# Convert to proper topics (capitalize first letter)
topics = [word.capitalize() for word, _ in common_words[:num_topics]]
# Add some domain-specific topics based on keywords
financial_terms = {
'stock': 'Stock Market',
'revenue': 'Financial Performance',
'profit': 'Financial Performance',
'growth': 'Business Growth',
'acquisition': 'Mergers & Acquisitions',
'merge': 'Mergers & Acquisitions',
'regulation': 'Regulatory Issues',
'compliance': 'Regulatory Issues',
'innovation': 'Innovation',
'technology': 'Technology',
'product': 'Product Launch',
'launch': 'Product Launch',
'ceo': 'Leadership',
'executive': 'Leadership',
'sustainable': 'Sustainability',
'green': 'Sustainability',
'environment': 'Environmental Impact',
'layoff': 'Workforce Changes',
'hire': 'Workforce Changes',
'market': 'Market Trends',
'competitor': 'Competition'
}
# Look for domain terms in the full text
domain_topics = []
for term, topic in financial_terms.items():
if term in text.lower() and topic not in domain_topics and len(
domain_topics) < 3:
domain_topics.append(topic)
# Combine generic topics and domain-specific topics
combined_topics = list(set(topics + domain_topics))
return combined_topics[:num_topics]
def generate_comparative_analysis(
articles: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Generate comparative analysis across multiple articles
Args:
articles: List of article dictionaries with sentiment and topics
Returns:
Dictionary containing comparative analysis results
"""
# Count sentiment distribution
sentiment_distribution = {"Positive": 0, "Negative": 0, "Neutral": 0}
for article in articles:
if 'Sentiment' in article:
sentiment_distribution[article['Sentiment']] += 1
# Collect all topics
all_topics = {}
for i, article in enumerate(articles):
if 'Topics' in article:
for topic in article['Topics']:
if topic not in all_topics:
all_topics[topic] = []
all_topics[topic].append(i)
# Identify common topics and unique topics per article
common_topics = [
topic for topic, article_indices in all_topics.items()
if len(article_indices) > 1
]
unique_topics = {}
for i, article in enumerate(articles):
article_unique_topics = []
if 'Topics' in article:
for topic in article['Topics']:
if len(all_topics[topic]) == 1 and all_topics[topic][0] == i:
article_unique_topics.append(topic)
unique_topics[
f"Unique Topics in Article {i+1}"] = article_unique_topics
# Generate coverage differences - compare pairs of articles
coverage_differences = []
# Compare at most 5 pairs to keep the output manageable
compared_pairs = 0
for i in range(len(articles)):
for j in range(i + 1, len(articles)):
if compared_pairs >= 5:
break
article1 = articles[i]
article2 = articles[j]
if 'Sentiment' in article1 and 'Sentiment' in article2 and article1[
'Sentiment'] != article2['Sentiment']:
# Only compare if sentiments differ
topics1 = set(article1.get('Topics', []))
topics2 = set(article2.get('Topics', []))
# Generate comparison text
comparison = f"Article {i+1} has a {article1['Sentiment']} sentiment focusing on {', '.join(topics1)}, "
comparison += f"while Article {j+1} has a {article2['Sentiment']} sentiment focusing on {', '.join(topics2)}."
# Generate impact text
impact = "This difference in sentiment suggests "
if article1['Sentiment'] == 'Positive' and article2[
'Sentiment'] == 'Negative':
impact += "mixed market signals that could lead to volatility in investor confidence."
elif article1['Sentiment'] == 'Negative' and article2[
'Sentiment'] == 'Positive':
impact += "that the company's perception is improving despite earlier concerns."
elif article1['Sentiment'] == 'Neutral' and article2[
'Sentiment'] == 'Positive':
impact += "a generally optimistic outlook despite some balanced coverage."
elif article1['Sentiment'] == 'Neutral' and article2[
'Sentiment'] == 'Negative':
impact += "that concerns are emerging despite generally balanced coverage."
else:
impact += "varying perspectives on the company's current situation."
coverage_differences.append({
'Comparison': comparison,
'Impact': impact
})
compared_pairs += 1
# Return comprehensive comparative analysis
return {
'Sentiment Distribution': sentiment_distribution,
'Topic Overlap': {
'Common Topics': common_topics,
**unique_topics
},
'Coverage Differences': coverage_differences
}
def summarize_sentiment(company_name: str, articles: List[Dict[str, Any]],
analysis: Dict[str, Any]) -> str:
"""
Generate an overall summary of sentiment analysis
Args:
company_name: Name of the company analyzed
articles: List of article dictionaries
analysis: Dictionary with comparative analysis
Returns:
String summary of sentiment analysis
"""
# Get sentiment distribution
sentiment_counts = analysis['Sentiment Distribution']
total_articles = sum(sentiment_counts.values())
# Calculate percentages
sentiment_percentages = {
sentiment: (count / total_articles) * 100 if total_articles > 0 else 0
for sentiment, count in sentiment_counts.items()
}
# Determine overall sentiment
if sentiment_percentages['Positive'] > 50:
overall_sentiment = "predominantly positive"
elif sentiment_percentages['Negative'] > 50:
overall_sentiment = "predominantly negative"
elif sentiment_percentages['Positive'] > sentiment_percentages['Negative']:
overall_sentiment = "cautiously positive"
elif sentiment_percentages['Negative'] > sentiment_percentages['Positive']:
overall_sentiment = "cautiously negative"
else:
overall_sentiment = "mixed or neutral"
# Get common topics if available
common_topics = []
if 'Topic Overlap' in analysis and 'Common Topics' in analysis[
'Topic Overlap']:
common_topics = analysis['Topic Overlap']['Common Topics']
# Generate summary text
summary = f"Recent news coverage for {company_name} is {overall_sentiment}, "
summary += f"with {sentiment_percentages['Positive']:.1f}% positive, "
summary += f"{sentiment_percentages['Negative']:.1f}% negative, and "
summary += f"{sentiment_percentages['Neutral']:.1f}% neutral articles. "
if common_topics:
summary += f"Key topics in the coverage include {', '.join(common_topics[:3])}. "
# Add market impact statement based on sentiment
if overall_sentiment == "predominantly positive":
summary += f"This positive coverage suggests strong market confidence in {company_name}, "
summary += "which could positively impact stock performance in the near term."
elif overall_sentiment == "predominantly negative":
summary += f"This negative coverage indicates concerns about {company_name}, "
summary += "which might lead to market caution and potential stock volatility."
elif overall_sentiment == "cautiously positive":
summary += f"The generally positive coverage with some concerns around {company_name} "
summary += "suggests moderately favorable market conditions with some areas to monitor."
elif overall_sentiment == "cautiously negative":
summary += f"The generally negative coverage with some positive aspects about {company_name} "
summary += "indicates market concerns that warrant attention despite some positive developments."
else:
summary += f"The mixed coverage of {company_name} reflects a complex market situation "
summary += "with both opportunities and challenges that investors should evaluate carefully."
return summary
|