File size: 3,302 Bytes
70fee89
 
 
 
506a2b4
 
 
 
70fee89
506a2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e30fc
506a2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), "src"))

import random
import numpy as np
import torch
import gradio as gr
from chatterbox.tts import ChatterboxTTS


DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


def set_seed(seed: int):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    random.seed(seed)
    np.random.seed(seed)


def load_model():
    model = ChatterboxTTS.from_pretrained(DEVICE)
    return model


def generate(model, text, audio_prompt_path, exaggeration, temperature, seed_num, cfgw, min_p, top_p, repetition_penalty):
    if model is None:
        model = ChatterboxTTS.from_pretrained(DEVICE)

    if seed_num != 0:
        set_seed(int(seed_num))

    wav = model.generate(
        text,
        audio_prompt_path=audio_prompt_path,
        exaggeration=exaggeration,
        temperature=temperature,
        cfg_weight=cfgw,
        min_p=min_p,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
    )
    return (model.sr, wav.squeeze(0).numpy())


with gr.Blocks() as demo:
    model_state = gr.State(None)  # Loaded once per session/user

    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                value="Now let's make my mum's favourite. So three mars bars into the pan. Then we add the tuna and just stir for a bit, just let the chocolate and fish infuse. A sprinkle of olive oil and some tomato ketchup. Now smell that. Oh boy this is going to be incredible.",
                label="Text to synthesize (max chars 300)",
                max_lines=5
            )
            ref_wav = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Reference Audio File", value=None)
            exaggeration = gr.Slider(0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5)
            cfg_weight = gr.Slider(0.0, 1, step=.05, label="CFG/Pace", value=0.5)

            with gr.Accordion("More options", open=False):
                seed_num = gr.Number(value=0, label="Random seed (0 for random)")
                temp = gr.Slider(0.05, 5, step=.05, label="temperature", value=.8)
                min_p = gr.Slider(0.00, 1.00, step=0.01, label="min_p || Newer Sampler. Recommend 0.02 > 0.1. Handles Higher Temperatures better. 0.00 Disables", value=0.05)
                top_p = gr.Slider(0.00, 1.00, step=0.01, label="top_p || Original Sampler. 1.0 Disables(recommended). Original 0.8", value=1.00)
                repetition_penalty = gr.Slider(1.00, 2.00, step=0.1, label="repetition_penalty", value=1.2)

            run_btn = gr.Button("Generate", variant="primary")

        with gr.Column():
            audio_output = gr.Audio(label="Output Audio")

    demo.load(fn=load_model, inputs=[], outputs=model_state)

    run_btn.click(
        fn=generate,
        inputs=[
            model_state,
            text,
            ref_wav,
            exaggeration,
            temp,
            seed_num,
            cfg_weight,
            min_p,
            top_p,
            repetition_penalty,
        ],
        outputs=audio_output,
    )

if __name__ == "__main__":
    demo.queue(
        max_size=50,
        default_concurrency_limit=1,
    ).launch(share=True)