File size: 8,923 Bytes
506a2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from dataclasses import dataclass
from pathlib import Path

import librosa
import torch
import perth
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from .models.t3 import T3
from .models.s3tokenizer import S3_SR, drop_invalid_tokens
from .models.s3gen import S3GEN_SR, S3Gen
from .models.tokenizers import EnTokenizer
from .models.voice_encoder import VoiceEncoder
from .models.t3.modules.cond_enc import T3Cond


REPO_ID = "ResembleAI/chatterbox"


def punc_norm(text: str) -> str:
    """
        Quick cleanup func for punctuation from LLMs or
        containing chars not seen often in the dataset
    """
    if len(text) == 0:
        return "You need to add some text for me to talk."

    # Capitalise first letter
    if text[0].islower():
        text = text[0].upper() + text[1:]

    # Remove multiple space chars
    text = " ".join(text.split())

    # Replace uncommon/llm punc
    punc_to_replace = [
        ("...", ", "),
        ("…", ", "),
        (":", ","),
        (" - ", ", "),
        (";", ", "),
        ("β€”", "-"),
        ("–", "-"),
        (" ,", ","),
        ("β€œ", "\""),
        ("”", "\""),
        ("β€˜", "'"),
        ("’", "'"),
    ]
    for old_char_sequence, new_char in punc_to_replace:
        text = text.replace(old_char_sequence, new_char)

    # Add full stop if no ending punc
    text = text.rstrip(" ")
    sentence_enders = {".", "!", "?", "-", ","}
    if not any(text.endswith(p) for p in sentence_enders):
        text += "."

    return text


@dataclass
class Conditionals:
    """
    Conditionals for T3 and S3Gen
    - T3 conditionals:
        - speaker_emb
        - clap_emb
        - cond_prompt_speech_tokens
        - cond_prompt_speech_emb
        - emotion_adv
    - S3Gen conditionals:
        - prompt_token
        - prompt_token_len
        - prompt_feat
        - prompt_feat_len
        - embedding
    """
    t3: T3Cond
    gen: dict

    def to(self, device):
        self.t3 = self.t3.to(device=device)
        for k, v in self.gen.items():
            if torch.is_tensor(v):
                self.gen[k] = v.to(device=device)
        return self

    def save(self, fpath: Path):
        arg_dict = dict(
            t3=self.t3.__dict__,
            gen=self.gen
        )
        torch.save(arg_dict, fpath)

    @classmethod
    def load(cls, fpath, map_location="cpu"):
        if isinstance(map_location, str):
            map_location = torch.device(map_location)
        kwargs = torch.load(fpath, map_location=map_location, weights_only=True)
        return cls(T3Cond(**kwargs['t3']), kwargs['gen'])


class ChatterboxTTS:
    ENC_COND_LEN = 6 * S3_SR
    DEC_COND_LEN = 10 * S3GEN_SR

    def __init__(
        self,
        t3: T3,
        s3gen: S3Gen,
        ve: VoiceEncoder,
        tokenizer: EnTokenizer,
        device: str,
        conds: Conditionals = None,
    ):
        self.sr = S3GEN_SR  # sample rate of synthesized audio
        self.t3 = t3
        self.s3gen = s3gen
        self.ve = ve
        self.tokenizer = tokenizer
        self.device = device
        self.conds = conds
        self.watermarker = perth.PerthImplicitWatermarker()

    @classmethod
    def from_local(cls, ckpt_dir, device) -> 'ChatterboxTTS':
        ckpt_dir = Path(ckpt_dir)

        # Always load to CPU first for non-CUDA devices to handle CUDA-saved models
        if device in ["cpu", "mps"]:
            map_location = torch.device('cpu')
        else:
            map_location = None

        ve = VoiceEncoder()
        ve.load_state_dict(
            load_file(ckpt_dir / "ve.safetensors")
        )
        ve.to(device).eval()

        t3 = T3()
        t3_state = load_file(ckpt_dir / "t3_cfg.safetensors")
        if "model" in t3_state.keys():
            t3_state = t3_state["model"][0]
        t3.load_state_dict(t3_state)
        t3.to(device).eval()

        s3gen = S3Gen()
        s3gen.load_state_dict(
            load_file(ckpt_dir / "s3gen.safetensors"), strict=False
        )
        s3gen.to(device).eval()

        tokenizer = EnTokenizer(
            str(ckpt_dir / "tokenizer.json")
        )

        conds = None
        if (builtin_voice := ckpt_dir / "conds.pt").exists():
            conds = Conditionals.load(builtin_voice, map_location=map_location).to(device)

        return cls(t3, s3gen, ve, tokenizer, device, conds=conds)

    @classmethod
    def from_pretrained(cls, device) -> 'ChatterboxTTS':
        # Check if MPS is available on macOS
        if device == "mps" and not torch.backends.mps.is_available():
            if not torch.backends.mps.is_built():
                print("MPS not available because the current PyTorch install was not built with MPS enabled.")
            else:
                print("MPS not available because the current MacOS version is not 12.3+ and/or you do not have an MPS-enabled device on this machine.")
            device = "cpu"

        for fpath in ["ve.safetensors", "t3_cfg.safetensors", "s3gen.safetensors", "tokenizer.json", "conds.pt"]:
            local_path = hf_hub_download(repo_id=REPO_ID, filename=fpath)

        return cls.from_local(Path(local_path).parent, device)

    def prepare_conditionals(self, wav_fpath, exaggeration=0.5):
        ## Load reference wav
        s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR)

        ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR)

        s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN]
        s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device)

        # Speech cond prompt tokens
        if plen := self.t3.hp.speech_cond_prompt_len:
            s3_tokzr = self.s3gen.tokenizer
            t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen)
            t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device)

        # Voice-encoder speaker embedding
        ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR))
        ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device)

        t3_cond = T3Cond(
            speaker_emb=ve_embed,
            cond_prompt_speech_tokens=t3_cond_prompt_tokens,
            emotion_adv=exaggeration * torch.ones(1, 1, 1),
        ).to(device=self.device)
        self.conds = Conditionals(t3_cond, s3gen_ref_dict)

    def generate(
        self,
        text,
        repetition_penalty=1.2,
        min_p=0.05,
        top_p=1.0,
        audio_prompt_path=None,
        exaggeration=0.5,
        cfg_weight=0.5,
        temperature=0.8,
    ):
        if audio_prompt_path:
            self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration)
        else:
            assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`"

        # Update exaggeration if needed
        if exaggeration != self.conds.t3.emotion_adv[0, 0, 0]:
            _cond: T3Cond = self.conds.t3
            self.conds.t3 = T3Cond(
                speaker_emb=_cond.speaker_emb,
                cond_prompt_speech_tokens=_cond.cond_prompt_speech_tokens,
                emotion_adv=exaggeration * torch.ones(1, 1, 1),
            ).to(device=self.device)

        # Norm and tokenize text
        text = punc_norm(text)
        text_tokens = self.tokenizer.text_to_tokens(text).to(self.device)

        if cfg_weight > 0.0:
            text_tokens = torch.cat([text_tokens, text_tokens], dim=0)  # Need two seqs for CFG

        sot = self.t3.hp.start_text_token
        eot = self.t3.hp.stop_text_token
        text_tokens = F.pad(text_tokens, (1, 0), value=sot)
        text_tokens = F.pad(text_tokens, (0, 1), value=eot)

        with torch.inference_mode():
            speech_tokens = self.t3.inference(
                t3_cond=self.conds.t3,
                text_tokens=text_tokens,
                max_new_tokens=1000,  # TODO: use the value in config
                temperature=temperature,
                cfg_weight=cfg_weight,
                repetition_penalty=repetition_penalty,
                min_p=min_p,
                top_p=top_p,
            )
            # Extract only the conditional batch.
            speech_tokens = speech_tokens[0]

            # TODO: output becomes 1D
            speech_tokens = drop_invalid_tokens(speech_tokens)
            
            speech_tokens = speech_tokens[speech_tokens < 6561]

            speech_tokens = speech_tokens.to(self.device)

            wav, _ = self.s3gen.inference(
                speech_tokens=speech_tokens,
                ref_dict=self.conds.gen,
            )
            wav = wav.squeeze(0).detach().cpu().numpy()
            watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr)
        return torch.from_numpy(watermarked_wav).unsqueeze(0)