import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), "src")) import random import numpy as np import torch import gradio as gr from chatterbox.tts import ChatterboxTTS DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def set_seed(seed: int): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) def load_model(): model = ChatterboxTTS.from_pretrained(DEVICE) return model def generate(model, text, audio_prompt_path, exaggeration, temperature, seed_num, cfgw, min_p, top_p, repetition_penalty): if model is None: model = ChatterboxTTS.from_pretrained(DEVICE) if seed_num != 0: set_seed(int(seed_num)) wav = model.generate( text, audio_prompt_path=audio_prompt_path, exaggeration=exaggeration, temperature=temperature, cfg_weight=cfgw, min_p=min_p, top_p=top_p, repetition_penalty=repetition_penalty, ) return (model.sr, wav.squeeze(0).numpy()) with gr.Blocks() as demo: model_state = gr.State(None) # Loaded once per session/user with gr.Row(): with gr.Column(): text = gr.Textbox( value="Now let's make my mum's favourite. So three mars bars into the pan. Then we add the tuna and just stir for a bit, just let the chocolate and fish infuse. A sprinkle of olive oil and some tomato ketchup. Now smell that. Oh boy this is going to be incredible.", label="Text to synthesize (max chars 300)", max_lines=5 ) ref_wav = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Reference Audio File", value=None) exaggeration = gr.Slider(0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5) cfg_weight = gr.Slider(0.0, 1, step=.05, label="CFG/Pace", value=0.5) with gr.Accordion("More options", open=False): seed_num = gr.Number(value=0, label="Random seed (0 for random)") temp = gr.Slider(0.05, 5, step=.05, label="temperature", value=.8) min_p = gr.Slider(0.00, 1.00, step=0.01, label="min_p || Newer Sampler. Recommend 0.02 > 0.1. Handles Higher Temperatures better. 0.00 Disables", value=0.05) top_p = gr.Slider(0.00, 1.00, step=0.01, label="top_p || Original Sampler. 1.0 Disables(recommended). Original 0.8", value=1.00) repetition_penalty = gr.Slider(1.00, 2.00, step=0.1, label="repetition_penalty", value=1.2) run_btn = gr.Button("Generate", variant="primary") with gr.Column(): audio_output = gr.Audio(label="Output Audio") demo.load(fn=load_model, inputs=[], outputs=model_state) run_btn.click( fn=generate, inputs=[ model_state, text, ref_wav, exaggeration, temp, seed_num, cfg_weight, min_p, top_p, repetition_penalty, ], outputs=audio_output, ) if __name__ == "__main__": demo.queue( max_size=50, default_concurrency_limit=1, ).launch(share=True)