import gradio as gr from modules import scripts from backend.misc.image_resize import adaptive_resize class PatchModelAddDownscale: def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method): sigma_start = model.model.predictor.percent_to_sigma(start_percent) sigma_end = model.model.predictor.percent_to_sigma(end_percent) def input_block_patch(h, transformer_options): if transformer_options["block"][1] == block_number: sigma = transformer_options["sigmas"][0].item() if sigma <= sigma_start and sigma >= sigma_end: h = adaptive_resize(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled") return h def output_block_patch(h, hsp, transformer_options): if h.shape[2] != hsp.shape[2]: h = adaptive_resize(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled") return h, hsp m = model.clone() if downscale_after_skip: m.set_model_input_block_patch_after_skip(input_block_patch) else: m.set_model_input_block_patch(input_block_patch) m.set_model_output_block_patch(output_block_patch) return (m,) opPatchModelAddDownscale = PatchModelAddDownscale() class KohyaHRFixForForge(scripts.Script): sorting_priority = 14 def title(self): return "Kohya HRFix Integrated" def show(self, is_img2img): return scripts.AlwaysVisible def ui(self, *args, **kwargs): upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] with gr.Accordion(open=False, label=self.title()): enabled = gr.Checkbox(label='Enabled', value=False) block_number = gr.Slider(label='Block Number', value=3, minimum=1, maximum=32, step=1) downscale_factor = gr.Slider(label='Downscale Factor', value=2.0, minimum=0.1, maximum=9.0, step=0.001) start_percent = gr.Slider(label='Start Percent', value=0.0, minimum=0.0, maximum=1.0, step=0.001) end_percent = gr.Slider(label='End Percent', value=0.35, minimum=0.0, maximum=1.0, step=0.001) downscale_after_skip = gr.Checkbox(label='Downscale After Skip', value=True) downscale_method = gr.Radio(label='Downscale Method', choices=upscale_methods, value=upscale_methods[0]) upscale_method = gr.Radio(label='Upscale Method', choices=upscale_methods, value=upscale_methods[0]) return enabled, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method def process_before_every_sampling(self, p, *script_args, **kwargs): enabled, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method = script_args block_number = int(block_number) if not enabled: return unet = p.sd_model.forge_objects.unet unet = opPatchModelAddDownscale.patch(unet, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method)[0] p.sd_model.forge_objects.unet = unet p.extra_generation_params.update(dict( kohya_hrfix_enabled=enabled, kohya_hrfix_block_number=block_number, kohya_hrfix_downscale_factor=downscale_factor, kohya_hrfix_start_percent=start_percent, kohya_hrfix_end_percent=end_percent, kohya_hrfix_downscale_after_skip=downscale_after_skip, kohya_hrfix_downscale_method=downscale_method, kohya_hrfix_upscale_method=upscale_method, )) return