File size: 5,599 Bytes
465d7e4
 
 
 
 
 
 
bce143a
465d7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce143a
465d7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407fa6f
 
 
 
 
 
 
 
 
 
 
465d7e4
407fa6f
 
 
 
 
 
465d7e4
 
 
 
 
 
bce143a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import logging

import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
import numpy as np
import spaces

from pytorch_grad_cam.utils.image import show_cam_on_image
from scripts.trainer import XrayReg

# Model selection dropdown options (extendable)
MODEL_OPTIONS = {
    "XrayReg (912yp4l6) [vit_large_patch16_224_in21k]": {
        "ckpt": "xray_regression_noaug/912yp4l6/checkpoints/epoch=99-step=5900.ckpt",
        "model_name": "vit_large_patch16_224_in21k"
    },
    "XrayReg (ie399gjr) [vit_small_patch16_224_in21k]": {
        "ckpt": "xray_regression_noaug/ie399gjr/checkpoints/epoch=99-step=5900.ckpt",
        "model_name": "vit_small_patch16_224_in21k"
    },
    "XrayReg (kcku20nx) [vit_large_patch16_224_in21k]": {
        "ckpt": "xray_regression_noaug/kcku20nx/checkpoints/epoch=99-step=5900.ckpt",
        "model_name": "vit_large_patch16_224_in21k"
    },
    "XrayReg (ohtmkj0i) [vit_base_patch16_224_in21k]": {
        "ckpt": "xray_regression_noaug/ohtmkj0i/checkpoints/epoch=99-step=5900.ckpt",
        "model_name": "vit_base_patch16_224_in21k"
    },
    "XrayReg (vlk8qrkx) [vit_large_patch16_224_in21k]": {
        "ckpt": "xray_regression_noaug/vlk8qrkx/checkpoints/epoch=99-step=5900.ckpt",
        "model_name": "vit_large_patch16_224_in21k"
    },
}


def preprocess_image(inp):
    """
    Preprocess the input image.

    Returns:
        input_tensor: Tensor to be fed into the model.
        rgb_img: NumPy array normalized to [0, 1] for GradCAM visualization.
    """
    try:
        preprocess = transforms.Compose(
            [
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
            ]
        )
        input_tensor = preprocess(inp).unsqueeze(0)
        rgb_img = np.array(inp.resize((224, 224))).astype(np.float32) / 255.0
        return input_tensor, rgb_img
    except Exception as e:
        logging.error("Error in image preprocessing: %s", e)
        raise


def load_custom_model(model_key):
    model_info = MODEL_OPTIONS[model_key]
    # Pass model_name to config for correct model instantiation
    config = {"model": {"name": model_info["model_name"]}}
    model = XrayReg.load_from_checkpoint(model_info["ckpt"])
    model = model.model.cuda() if torch.cuda.is_available() else model.model
    model.eval()
    for param in model.parameters():
        param.requires_grad = True
    return model


def preprocess_image_custom(inp):
    preprocess = transforms.Compose(
        [
            transforms.Resize((224, 224)),
            transforms.Grayscale(num_output_channels=1),
            transforms.ToTensor(),
        ]
    )
    input_tensor = preprocess(inp).unsqueeze(0)
    rgb_img = np.array(inp.resize((224, 224)).convert("RGB")).astype(np.float32) / 255.0
    return input_tensor, rgb_img


def predict_custom(model, input_tensor):
    with torch.no_grad():
        input_tensor = (
            input_tensor.cuda() if torch.cuda.is_available() else input_tensor
        )
        pred = model(input_tensor)
        pred = pred.cpu().numpy().flatten()[0]
    return float(pred)


@spaces.GPU
def predict_and_cam_custom(inp, model):
    input_tensor, rgb_img = preprocess_image_custom(inp)
    value = predict_custom(model, input_tensor)
    # GradCAM for regression: use last conv layer, target output
    from pytorch_grad_cam import GradCAM
    from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget

    target_layers = [
        layer
        for name, layer in model.named_modules()
        if isinstance(layer, torch.nn.Conv2d)
    ][-1:]
    gradcam = GradCAM(model=model, target_layers=target_layers)
    targets = [ClassifierOutputTarget(0)]  # For regression, just use output
    grayscale_cam = gradcam(input_tensor=input_tensor, targets=targets)[0]
    cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
    cam_pil = Image.fromarray(cam_image)
    # Return as tuple (number, image) for Gradio
    return value, cam_pil


def create_interface_custom():
    # Use stateful model cache to avoid reloading on every prediction
    from functools import lru_cache

    @lru_cache(maxsize=5)
    def cached_load_model(model_key):
        return load_custom_model(model_key)

    def predict_wrapper(inp, model_key):
        model = cached_load_model(model_key)
        return predict_and_cam_custom(inp, model)

    interface = gr.Interface(
        fn=predict_wrapper,
        inputs=[
            gr.Image(type="pil"),
            gr.Dropdown(list(MODEL_OPTIONS.keys()), label="Model"),
        ],
        outputs=[
            gr.Number(label="Regression Output"),
            gr.Image(type="pil", label="GradCAM Visualization"),
        ],
        examples=None,
        title="Xray Regression Gradio App",
        description="Upload an X-ray image and select a model to get regression output and GradCAM visualization.",
        allow_flagging="never",
        live=True,  # Ensures model reloads on dropdown change
    )
    return interface


def download_models():
    import huggingface_hub

    repo_name = "SuperSecureHuman/xray-reg-models"
    local_dir = "./"
    huggingface_hub.snapshot_download(
        repo_id=repo_name,
        local_dir=local_dir,
    )


def main():
    # Download models if not already present
    try:
        download_models()
    except Exception as e:
        logging.error("Error downloading models: %s", e)
        exit(1)
    logging.basicConfig(level=logging.INFO)
    interface = create_interface_custom()
    interface.launch()


if __name__ == "__main__":
    main()