File size: 4,309 Bytes
465d7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import pandas as pd
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader, random_split
from torchvision import transforms
import lightning as L
import kornia as K
import numpy as np
import random


class XrayDataset(Dataset):

    def __init__(self,
                 data_frame,
                 root_dir,
                 transform=None,
                 apply_equalization=False):
        self.data_frame = data_frame
        self.root_dir = root_dir
        self.transform = transform
        self.apply_equalization = apply_equalization

    def __len__(self):
        return len(self.data_frame)

    def __getitem__(self, idx):
        row = self.data_frame.iloc[idx]
        img_path = os.path.join(self.root_dir, row["file_name"])
        img = Image.open(img_path)

        img = img.convert("L")

        if self.transform:
            img = self.transform(img)

        # Apply CLAHE if flag is set
        if self.apply_equalization:
            #            img = transforms.ToTensor()(img)
            img = K.enhance.equalize_clahe(img.unsqueeze(0)).squeeze(0)

        label = torch.tensor(row["value"],
                             dtype=torch.float)  # Ensure label is float
        return img, label, row["file_name"]


class XrayData(L.LightningDataModule):
    common_seed = 42

    @staticmethod
    def seed_worker(worker_id):
        worker_seed = torch.initial_seed() % 2**32
        np.random.seed(worker_seed)
        random.seed(worker_seed)

    def __init__(
        self,
        root_dir,
        label_csv,
        batch_size=32,
        val_split=0.2,
        apply_equalization=False,
    ):
        super().__init__()
        self.root_dir = root_dir
        self.label_csv = label_csv
        self.batch_size = batch_size
        self.val_split = val_split
        self.apply_equalization = apply_equalization

        torch.manual_seed(self.common_seed)
        torch.cuda.manual_seed_all(self.common_seed)
        torch.backends.cudnn.deterministic = True

        self.train_transform = transforms.Compose([
            transforms.Resize((224, 224)),
            # transforms.RandomHorizontalFlip(),
            # transforms.RandomRotation(20),
            transforms.ToTensor(),
        ])

        self.val_transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
        ])

        self.full_dataset = None

    def setup(self, stage=None):
        data_frame = pd.read_csv(self.label_csv)
        data_frame = data_frame.sample(
            frac=1, random_state=self.common_seed).reset_index(drop=True)

        dataset_size = len(data_frame)
        val_size = int(dataset_size * self.val_split)
        train_size = dataset_size - val_size

        # Split the dataset using random_split
        full_dataset = XrayDataset(
            data_frame,
            self.root_dir,
            transform=None,  # We'll apply the correct transform later
            apply_equalization=self.apply_equalization,
        )

        self.train_dataset, self.val_dataset = random_split(
            full_dataset,
            [train_size, val_size],
            generator=torch.Generator().manual_seed(self.common_seed),
        )

        def train_transforms(x):
            return self.train_transform(x) if self.train_transform else x

        def val_transforms(x):
            return self.val_transform(x) if self.val_transform else x

        self.train_dataset.dataset.transform = train_transforms
        self.val_dataset.dataset.transform = val_transforms

    def train_dataloader(self):
        return DataLoader(
            self.train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=4,
            worker_init_fn=self.seed_worker,
        )

    def val_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=4,
            worker_init_fn=self.seed_worker,
        )

    def test_dataloader(self):
        return DataLoader(
            self.val_dataset,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=4,
            worker_init_fn=self.seed_worker,
        )