Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,101 Bytes
465d7e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/venom/miniforge3/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"/home/venom/miniforge3/lib/python3.10/site-packages/kornia/feature/lightglue.py:44: FutureWarning: `torch.cuda.amp.custom_fwd(args...)` is deprecated. Please use `torch.amp.custom_fwd(args..., device_type='cuda')` instead.\n",
" @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)\n"
]
}
],
"source": [
"import os\n",
"import pandas as pd\n",
"from PIL import Image\n",
"import torch\n",
"from torch.utils.data import Dataset, DataLoader, random_split\n",
"from torchvision import transforms\n",
"import lightning as L\n",
"import kornia as K\n",
"import numpy as np\n",
"import random\n",
"import sys\n",
"\n",
"PROJECT_ROOT = os.path.abspath(os.path.normpath(\"/home/venom/repo/xray-exp/\"))\n",
"sys.path.append(PROJECT_ROOT)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from models.model_loader import create_model\n",
"from scripts.trainer import XrayReg"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class XrayInferenceDataset(Dataset):\n",
"\n",
" def __init__(self, root_dir, transform=None):\n",
" self.root_dir = root_dir\n",
" self.file_names = os.listdir(root_dir)\n",
" self.transform = transform\n",
"\n",
" def __len__(self):\n",
" return len(self.file_names)\n",
"\n",
" def __getitem__(self, idx):\n",
" file_name = self.file_names[idx]\n",
" img_path = os.path.join(self.root_dir, file_name)\n",
" img = Image.open(img_path)\n",
"\n",
" img = img.convert(\"L\")\n",
"\n",
" if self.transform:\n",
" img = self.transform(img)\n",
"\n",
" return img, file_name\n",
"\n",
"\n",
"class XrayDataInference(L.LightningDataModule):\n",
" common_seed = 42\n",
"\n",
" @staticmethod\n",
" def seed_worker(worker_id):\n",
" worker_seed = torch.initial_seed() % 2**32\n",
" np.random.seed(worker_seed)\n",
" random.seed(worker_seed)\n",
"\n",
" def __init__(self, root_dir, batch_size=32):\n",
" super().__init__()\n",
" self.root_dir = root_dir\n",
" self.batch_size = batch_size\n",
"\n",
" torch.manual_seed(self.common_seed)\n",
" torch.cuda.manual_seed_all(self.common_seed)\n",
" torch.backends.cudnn.deterministic = True\n",
"\n",
" self.transform = transforms.Compose(\n",
" [\n",
" transforms.Resize((224, 224)),\n",
" transforms.ToTensor(),\n",
" ]\n",
" )\n",
" self.inference_dataset = XrayInferenceDataset(\n",
" self.root_dir, transform=self.transform\n",
" )\n",
"\n",
" def inference_dataloader(self):\n",
" return DataLoader(\n",
" self.inference_dataset,\n",
" batch_size=self.batch_size,\n",
" shuffle=False,\n",
" num_workers=4,\n",
" worker_init_fn=self.seed_worker,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/venom/miniforge3/lib/python3.10/site-packages/timm/models/_factory.py:117: UserWarning: Mapping deprecated model name vit_large_patch16_224_in21k to current vit_large_patch16_224.augreg_in21k.\n",
" model = create_fn(\n"
]
}
],
"source": [
"trainer_config = XrayReg.load_from_checkpoint(\n",
" \"/home/venom/repo/xray-exp/xray_regression_noaug/912yp4l6/checkpoints/epoch=99-step=5900.ckpt\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"infer_ds = XrayDataInference(\n",
" \"/home/venom/Downloads/CXR AI PNG- FINAL 13-12/\", batch_size=16\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# run inference against the infer_ds and log to a file (file name run_name)\n",
"\n",
"model = trainer_config.model\n",
"\n",
"model.eval()\n",
"model = model.cuda()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# run inference against the infer_ds and log to a file (file name run_ID)\n",
"RUN_ID = \"912yp4l6\"\n",
"\n",
"with open(f\"/home/venom/repo/xray-exp/inference_results/{RUN_ID}.csv\", \"w\") as f:\n",
" f.write(\"file_name,predicted\\n\")\n",
" for img, file_name in infer_ds.inference_dataloader():\n",
" img = img.cuda()\n",
" with torch.no_grad():\n",
" pred = model(img)\n",
" pred = pred.cpu().numpy()\n",
" for i in range(len(pred)):\n",
" f.write(f\"{file_name[i]},{pred[i][0]}\\n\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|