File size: 6,101 Bytes
465d7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/venom/miniforge3/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "/home/venom/miniforge3/lib/python3.10/site-packages/kornia/feature/lightglue.py:44: FutureWarning: `torch.cuda.amp.custom_fwd(args...)` is deprecated. Please use `torch.amp.custom_fwd(args..., device_type='cuda')` instead.\n",
      "  @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "from PIL import Image\n",
    "import torch\n",
    "from torch.utils.data import Dataset, DataLoader, random_split\n",
    "from torchvision import transforms\n",
    "import lightning as L\n",
    "import kornia as K\n",
    "import numpy as np\n",
    "import random\n",
    "import sys\n",
    "\n",
    "PROJECT_ROOT = os.path.abspath(os.path.normpath(\"/home/venom/repo/xray-exp/\"))\n",
    "sys.path.append(PROJECT_ROOT)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from models.model_loader import create_model\n",
    "from scripts.trainer import XrayReg"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "class XrayInferenceDataset(Dataset):\n",
    "\n",
    "    def __init__(self, root_dir, transform=None):\n",
    "        self.root_dir = root_dir\n",
    "        self.file_names = os.listdir(root_dir)\n",
    "        self.transform = transform\n",
    "\n",
    "    def __len__(self):\n",
    "        return len(self.file_names)\n",
    "\n",
    "    def __getitem__(self, idx):\n",
    "        file_name = self.file_names[idx]\n",
    "        img_path = os.path.join(self.root_dir, file_name)\n",
    "        img = Image.open(img_path)\n",
    "\n",
    "        img = img.convert(\"L\")\n",
    "\n",
    "        if self.transform:\n",
    "            img = self.transform(img)\n",
    "\n",
    "        return img, file_name\n",
    "\n",
    "\n",
    "class XrayDataInference(L.LightningDataModule):\n",
    "    common_seed = 42\n",
    "\n",
    "    @staticmethod\n",
    "    def seed_worker(worker_id):\n",
    "        worker_seed = torch.initial_seed() % 2**32\n",
    "        np.random.seed(worker_seed)\n",
    "        random.seed(worker_seed)\n",
    "\n",
    "    def __init__(self, root_dir, batch_size=32):\n",
    "        super().__init__()\n",
    "        self.root_dir = root_dir\n",
    "        self.batch_size = batch_size\n",
    "\n",
    "        torch.manual_seed(self.common_seed)\n",
    "        torch.cuda.manual_seed_all(self.common_seed)\n",
    "        torch.backends.cudnn.deterministic = True\n",
    "\n",
    "        self.transform = transforms.Compose(\n",
    "            [\n",
    "                transforms.Resize((224, 224)),\n",
    "                transforms.ToTensor(),\n",
    "            ]\n",
    "        )\n",
    "        self.inference_dataset = XrayInferenceDataset(\n",
    "            self.root_dir, transform=self.transform\n",
    "        )\n",
    "\n",
    "    def inference_dataloader(self):\n",
    "        return DataLoader(\n",
    "            self.inference_dataset,\n",
    "            batch_size=self.batch_size,\n",
    "            shuffle=False,\n",
    "            num_workers=4,\n",
    "            worker_init_fn=self.seed_worker,\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/venom/miniforge3/lib/python3.10/site-packages/timm/models/_factory.py:117: UserWarning: Mapping deprecated model name vit_large_patch16_224_in21k to current vit_large_patch16_224.augreg_in21k.\n",
      "  model = create_fn(\n"
     ]
    }
   ],
   "source": [
    "trainer_config = XrayReg.load_from_checkpoint(\n",
    "    \"/home/venom/repo/xray-exp/xray_regression_noaug/912yp4l6/checkpoints/epoch=99-step=5900.ckpt\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "infer_ds = XrayDataInference(\n",
    "    \"/home/venom/Downloads/CXR AI PNG- FINAL 13-12/\", batch_size=16\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# run inference against the infer_ds and log to a file (file name run_name)\n",
    "\n",
    "model = trainer_config.model\n",
    "\n",
    "model.eval()\n",
    "model = model.cuda()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "# run inference against the infer_ds and log to a file (file name run_ID)\n",
    "RUN_ID = \"912yp4l6\"\n",
    "\n",
    "with open(f\"/home/venom/repo/xray-exp/inference_results/{RUN_ID}.csv\", \"w\") as f:\n",
    "    f.write(\"file_name,predicted\\n\")\n",
    "    for img, file_name in infer_ds.inference_dataloader():\n",
    "        img = img.cuda()\n",
    "        with torch.no_grad():\n",
    "            pred = model(img)\n",
    "            pred = pred.cpu().numpy()\n",
    "            for i in range(len(pred)):\n",
    "                f.write(f\"{file_name[i]},{pred[i][0]}\\n\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}