import os import sys PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(PROJECT_ROOT) import yaml import argparse from lightning import Trainer from lightning.pytorch.loggers import WandbLogger from trainer import XrayReg import logging import wandb from lightning.pytorch.callbacks import LearningRateMonitor def parse_args(): parser = argparse.ArgumentParser(description="Train Xray Model") parser.add_argument( "--config", type=str, default="configs/config.yaml", help="Path to the config file", ) return parser.parse_args() if __name__ == "__main__": logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) try: args = parse_args() with open(args.config, "r") as ymlfile: config = yaml.safe_load(ymlfile) wandb.init( project=config.get("wandb_project", "xray_regression_noaug")) wandb_logger = WandbLogger( project=config.get("wandb_project", "xray_regression_noaug")) lr_monitor = LearningRateMonitor(logging_interval="step") trainer = Trainer( max_epochs=config["training"]["max_epochs"], log_every_n_steps=config["logging"]["log_every_n_steps"], logger=wandb_logger, callbacks=[lr_monitor]) model = XrayReg(config) logger.info("Starting training...") trainer.fit(model) logger.info("Training completed. Starting testing...") trainer.test(model) logger.info("Testing completed. Logging test results...") model.save_test_results_to_wandb() logger.info("Test results saved to Wandb") wandb.finish() except Exception as e: logger.error(f"An error occurred: {e}") sys.exit(1)