SuriRaja commited on
Commit
f0568f6
·
verified ·
1 Parent(s): 630b453

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -30
app.py CHANGED
@@ -1,51 +1,25 @@
1
- '''
2
  import gradio as gr
3
- from utils import extract_frames
4
  from model import predict_defect
5
-
6
- def analyze_video(video):
7
- frames = extract_frames(video)
8
- results = [predict_defect(frame) for frame in frames]
9
- return results
10
-
11
- demo = gr.Interface(
12
- fn=analyze_video,
13
- inputs=gr.Video(label="Upload Drone Video"),
14
- outputs=gr.Gallery(label="Detected Road Defects")
15
- ,
16
- title="Drone-based Road Defect Detection",
17
- description="Upload drone footage to identify and highlight road surface defects."
18
- )
19
-
20
- if __name__ == "__main__":
21
- demo.launch()
22
- '''
23
-
24
- import gradio as gr
25
- import os
26
  from utils import extract_frames
27
- from model import predict_defect
28
 
29
- # === 1. Load videos from the Data folder ===
30
  DATA_DIR = "Data"
31
 
32
  def get_video_choices():
33
  return [os.path.join(DATA_DIR, f) for f in os.listdir(DATA_DIR) if f.endswith(".mp4")]
34
 
35
- # === 2. Analyze selected video ===
36
  def analyze_selected_video(video_path):
37
  frames = extract_frames(video_path)
38
  results = [predict_defect(frame) for frame in frames]
39
  return results
40
 
41
- # === 3. Gradio interface ===
42
  demo = gr.Interface(
43
  fn=analyze_selected_video,
44
- inputs=gr.Dropdown(choices=get_video_choices(), label="Select Drone Video"),
45
  outputs=gr.Gallery(label="Detected Road Defects"),
46
  title="Drone-based Road Defect Detection",
47
- description="Select footage from the Data folder to highlight road surface defects."
48
  )
49
 
50
  if __name__ == "__main__":
51
- demo.launch()
 
 
1
  import gradio as gr
 
2
  from model import predict_defect
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  from utils import extract_frames
4
+ import os
5
 
 
6
  DATA_DIR = "Data"
7
 
8
  def get_video_choices():
9
  return [os.path.join(DATA_DIR, f) for f in os.listdir(DATA_DIR) if f.endswith(".mp4")]
10
 
 
11
  def analyze_selected_video(video_path):
12
  frames = extract_frames(video_path)
13
  results = [predict_defect(frame) for frame in frames]
14
  return results
15
 
 
16
  demo = gr.Interface(
17
  fn=analyze_selected_video,
18
+ inputs=gr.Dropdown(choices=lambda: get_video_choices(), label="Select Drone Video"),
19
  outputs=gr.Gallery(label="Detected Road Defects"),
20
  title="Drone-based Road Defect Detection",
21
+ description="Highlight road defects (cracks, potholes, misalignments) in red using video frames."
22
  )
23
 
24
  if __name__ == "__main__":
25
+ demo.launch()