File size: 30,462 Bytes
983aeb4 c739af5 bb0db22 983aeb4 9c6a431 2c04b84 9c6a431 2c04b84 983aeb4 bb0db22 983aeb4 d0f303d bb0db22 983aeb4 bb0db22 d0f303d 983aeb4 bb0db22 d0f303d bb0db22 983aeb4 bb0db22 983aeb4 2c04b84 983aeb4 2c04b84 983aeb4 ace8864 983aeb4 ace8864 983aeb4 ace8864 983aeb4 bbc63a5 73166b8 bbc63a5 db29da7 73166b8 9c6a431 bbc63a5 95f4c51 73166b8 bbc63a5 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 db29da7 bb0db22 983aeb4 bb0db22 983aeb4 bb0db22 983aeb4 80cff10 983aeb4 80cff10 983aeb4 bb0db22 983aeb4 cc052ee 983aeb4 8067596 983aeb4 8067596 983aeb4 bb0db22 983aeb4 bb0db22 983aeb4 bb0db22 983aeb4 bb0db22 7fdbff2 bb0db22 7fdbff2 bb0db22 983aeb4 bb0db22 73166b8 bb0db22 2c04b84 983aeb4 3645162 983aeb4 3645162 d0f303d 983aeb4 bb0db22 983aeb4 d0f303d 983aeb4 d0f303d bb0db22 3645162 bb0db22 bbc63a5 44a3b70 bbc63a5 44a3b70 bbc63a5 44a3b70 a1a7ed8 bb0db22 7102d87 bb0db22 983aeb4 d0f303d 44a3b70 bbc63a5 bbd6d06 bbc63a5 d0f303d 983aeb4 bb0db22 983aeb4 95f4c51 bbc63a5 983aeb4 bb0db22 983aeb4 d0f303d 983aeb4 d0f303d bb0db22 983aeb4 73166b8 c372914 d0f303d c372914 73166b8 bb0db22 73166b8 c372914 bbd6d06 c372914 983aeb4 d0f303d 983aeb4 d0f303d 983aeb4 d0f303d 983aeb4 d0f303d 983aeb4 bbc63a5 983aeb4 2c04b84 bbc63a5 2c04b84 983aeb4 bbc63a5 983aeb4 ace8864 983aeb4 bb0db22 983aeb4 db29da7 983aeb4 db29da7 983aeb4 db29da7 983aeb4 db29da7 983aeb4 db29da7 983aeb4 bb0db22 983aeb4 bb0db22 983aeb4 bbc63a5 983aeb4 bb0db22 983aeb4 ace8864 73166b8 983aeb4 82fac91 983aeb4 bbd6d06 983aeb4 2c04b84 983aeb4 2c04b84 9c6a431 983aeb4 2c04b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 |
import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import (
preprocess_and_load_df,
get_from_user,
ask_question,
)
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
from datasets import load_dataset, get_dataset_config_info, Dataset
from PIL import Image
import time
import uuid
# Page config with beautiful theme
st.set_page_config(
page_title="VayuChat - AI Air Quality Assistant",
page_icon="V",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for beautiful styling
st.markdown("""
<style>
/* Clean app background */
.stApp {
background-color: #ffffff;
color: #212529;
font-family: 'Segoe UI', sans-serif;
}
/* Reduce main container padding */
.main .block-container {
padding-top: 0.5rem;
padding-bottom: 3rem;
max-width: 100%;
}
/* Remove excessive spacing */
.element-container {
margin-bottom: 0.5rem !important;
}
/* Fix sidebar spacing */
[data-testid="stSidebar"] .element-container {
margin-bottom: 0.25rem !important;
}
/* Sidebar */
[data-testid="stSidebar"] {
background-color: #f8f9fa;
border-right: 1px solid #dee2e6;
padding: 1rem;
}
/* Main title */
.main-title {
text-align: center;
color: #343a40;
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 0.5rem;
}
/* Subtitle */
.subtitle {
text-align: center;
color: #6c757d;
font-size: 1.1rem;
margin-bottom: 1.5rem;
}
/* Instructions */
.instructions {
background-color: #f1f3f5;
border-left: 4px solid #0d6efd;
padding: 1rem;
margin-bottom: 1.5rem;
border-radius: 6px;
color: #495057;
text-align: left;
}
/* Quick prompt buttons */
.quick-prompt-container {
display: flex;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 1.5rem;
padding: 1rem;
background-color: #f8f9fa;
border-radius: 10px;
border: 1px solid #dee2e6;
}
.quick-prompt-btn {
background-color: #0d6efd;
color: white;
border: none;
padding: 8px 16px;
border-radius: 20px;
font-size: 0.9rem;
cursor: pointer;
transition: all 0.2s ease;
white-space: nowrap;
}
.quick-prompt-btn:hover {
background-color: #0b5ed7;
transform: translateY(-2px);
}
/* User message styling */
.user-message {
background: #3b82f6;
color: white;
padding: 0.75rem 1rem;
border-radius: 12px;
max-width: 70%;
}
.user-info {
font-size: 0.875rem;
opacity: 0.9;
margin-bottom: 3px;
}
/* Assistant message styling */
.assistant-message {
background: #f1f5f9;
color: #334155;
padding: 0.75rem 1rem;
border-radius: 12px;
max-width: 70%;
}
.assistant-info {
font-size: 0.875rem;
color: #6b7280;
margin-bottom: 5px;
}
/* Processing indicator */
.processing-indicator {
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
color: #333;
padding: 1rem 1.5rem;
border-radius: 12px;
margin: 1rem 0;
margin-left: 0;
margin-right: auto;
max-width: 70%;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.7; }
100% { opacity: 1; }
}
/* Feedback box */
.feedback-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
/* Success and error messages */
.success-message {
background-color: #d1e7dd;
color: #0f5132;
padding: 1rem;
border-radius: 6px;
border: 1px solid #badbcc;
}
.error-message {
background-color: #f8d7da;
color: #842029;
padding: 1rem;
border-radius: 6px;
border: 1px solid #f5c2c7;
}
/* Chat input styling like mockup */
.stChatInput {
border-radius: 8px;
border: 1px solid #d1d5db;
background: #ffffff;
padding: 0.75rem 1rem;
font-size: 1rem;
}
.stChatInput:focus {
border-color: #3b82f6;
box-shadow: 0 0 0 3px rgba(59, 130, 246, 0.1);
}
/* Button */
.stButton > button {
background-color: #0d6efd;
color: white;
border-radius: 6px;
padding: 0.5rem 1.25rem;
border: none;
font-weight: 600;
transition: background-color 0.2s ease;
}
.stButton > button:hover {
background-color: #0b5ed7;
}
/* Sidebar button styling - smaller, left-aligned */
[data-testid="stSidebar"] .stButton > button {
background-color: #f8fafc;
color: #475569;
border: 1px solid #e2e8f0;
padding: 0.375rem 0.75rem;
font-size: 0.65rem;
font-weight: normal;
text-align: left;
white-space: normal;
height: auto;
line-height: 1.2;
transition: all 0.2s ease;
cursor: pointer;
margin-bottom: 0.25rem;
width: 100%;
display: flex;
justify-content: flex-start;
}
[data-testid="stSidebar"] .stButton > button:hover {
background-color: #e0f2fe;
border-color: #0ea5e9;
color: #0c4a6e;
}
[data-testid="stSidebar"] .stButton > button:active {
transform: translateY(0);
box-shadow: none;
}
/* Code container styling */
.code-container {
margin: 1rem 0;
border: 1px solid #d1d5db;
border-radius: 12px;
background: white;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
}
.code-header {
display: flex;
justify-content: space-between;
align-items: center;
padding: 0.875rem 1.25rem;
background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%);
border-bottom: 1px solid #e2e8f0;
cursor: pointer;
transition: all 0.2s ease;
border-radius: 12px 12px 0 0;
}
.code-header:hover {
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e1 100%);
}
.code-title {
font-size: 0.9rem;
font-weight: 600;
color: #1e293b;
display: flex;
align-items: center;
gap: 0.5rem;
}
.code-title:before {
content: "β‘";
font-size: 0.8rem;
}
.toggle-text {
font-size: 0.75rem;
color: #64748b;
font-weight: 500;
}
.code-block {
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
color: #e2e8f0;
padding: 1.5rem;
font-family: 'SF Mono', 'Monaco', 'Menlo', 'Consolas', monospace;
font-size: 0.875rem;
overflow-x: auto;
line-height: 1.6;
border-radius: 0 0 12px 12px;
}
.answer-container {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 1.5rem;
margin: 1rem 0;
}
.answer-text {
font-size: 1.125rem;
color: #1e293b;
line-height: 1.6;
margin-bottom: 1rem;
}
.answer-highlight {
background: #fef3c7;
padding: 0.125rem 0.375rem;
border-radius: 4px;
font-weight: 600;
color: #92400e;
}
.context-info {
background: #f1f5f9;
border-left: 4px solid #3b82f6;
padding: 0.75rem 1rem;
margin: 1rem 0;
font-size: 0.875rem;
color: #475569;
}
/* Hide default menu and footer */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
/* Auto scroll */
.main-container {
height: 70vh;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
# JavaScript for interactions
st.markdown("""
<script>
function scrollToBottom() {
setTimeout(function() {
const mainContainer = document.querySelector('.main-container');
if (mainContainer) {
mainContainer.scrollTop = mainContainer.scrollHeight;
}
window.scrollTo(0, document.body.scrollHeight);
}, 100);
}
function toggleCode(header) {
const codeBlock = header.nextElementSibling;
const toggleText = header.querySelector('.toggle-text');
if (codeBlock.style.display === 'none') {
codeBlock.style.display = 'block';
toggleText.textContent = 'Click to collapse';
} else {
codeBlock.style.display = 'none';
toggleText.textContent = 'Click to expand';
}
}
</script>
""", unsafe_allow_html=True)
# FORCE reload environment variables
load_dotenv(override=True)
# Get API keys
Groq_Token = os.getenv("GROQ_API_KEY")
hf_token = os.getenv("HF_TOKEN")
gemini_token = os.getenv("GEMINI_TOKEN")
models = {
"gpt-oss-20b": "openai/gpt-oss-20b",
"gpt-oss-120b": "openai/gpt-oss-120b",
"llama3.1": "llama-3.1-8b-instant",
"llama3.3": "llama-3.3-70b-versatile",
"deepseek-R1": "deepseek-r1-distill-llama-70b",
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
"llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct",
"gemini-pro": "gemini-1.5-pro"
}
self_path = os.path.dirname(os.path.abspath(__file__))
# Initialize session ID for this session
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
def upload_feedback(feedback, error, output, last_prompt, code, status):
"""Enhanced feedback upload function with better logging and error handling"""
try:
if not hf_token or hf_token.strip() == "":
st.warning("Cannot upload feedback - HF_TOKEN not available")
return False
# Create comprehensive feedback data
feedback_data = {
"timestamp": datetime.now().isoformat(),
"session_id": st.session_state.session_id,
"feedback_score": feedback.get("score", ""),
"feedback_comment": feedback.get("text", ""),
"user_prompt": last_prompt,
"ai_output": str(output),
"generated_code": code or "",
"error_message": error or "",
"is_image_output": status.get("is_image", False),
"success": not bool(error)
}
# Create unique folder name with timestamp
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
random_id = str(uuid.uuid4())[:8]
folder_name = f"feedback_{timestamp_str}_{random_id}"
# Create markdown feedback file
markdown_content = f"""# VayuChat Feedback Report
## Session Information
- **Timestamp**: {feedback_data['timestamp']}
- **Session ID**: {feedback_data['session_id']}
## User Interaction
**Prompt**: {feedback_data['user_prompt']}
## AI Response
**Output**: {feedback_data['ai_output']}
## Generated Code
```python
{feedback_data['generated_code']}
```
## Technical Details
- **Error Message**: {feedback_data['error_message']}
- **Is Image Output**: {feedback_data['is_image_output']}
- **Success**: {feedback_data['success']}
## User Feedback
- **Score**: {feedback_data['feedback_score']}
- **Comments**: {feedback_data['feedback_comment']}
"""
# Save markdown file locally
markdown_filename = f"{folder_name}.md"
markdown_local_path = f"/tmp/{markdown_filename}"
with open(markdown_local_path, "w", encoding="utf-8") as f:
f.write(markdown_content)
# Upload to Hugging Face
api = HfApi(token=hf_token)
# Upload markdown feedback
api.upload_file(
path_or_fileobj=markdown_local_path,
path_in_repo=f"data/{markdown_filename}",
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
repo_type="dataset",
)
# Upload image if it exists and is an image output
if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
try:
image_filename = f"{folder_name}_plot.png"
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{image_filename}",
repo_id="SustainabilityLabIITGN/VayuChat_Feedback",
repo_type="dataset",
)
except Exception as img_error:
print(f"Error uploading image: {img_error}")
# Clean up local files
if os.path.exists(markdown_local_path):
os.remove(markdown_local_path)
st.success("Feedback uploaded successfully!")
return True
except Exception as e:
st.error(f"Error uploading feedback: {e}")
print(f"Feedback upload error: {e}")
return False
# Filter available models
available_models = []
model_names = list(models.keys())
groq_models = []
gemini_models = []
for model_name in model_names:
if "gemini" not in model_name:
groq_models.append(model_name)
else:
gemini_models.append(model_name)
if Groq_Token and Groq_Token.strip():
available_models.extend(groq_models)
if gemini_token and gemini_token.strip():
available_models.extend(gemini_models)
if not available_models:
st.error("No API keys available! Please set up your API keys in the .env file")
st.stop()
# Set DeepSeek-R1 as default if available
default_index = 0
if "deepseek-R1" in available_models:
default_index = available_models.index("deepseek-R1")
# Header with logo, title and model selector
header_col1, header_col2 = st.columns([2, 1])
with header_col1:
st.markdown("""
<div style='display: flex; align-items: center; gap: 0.75rem; margin-bottom: 0.25rem;'>
<div style='width: 32px; height: 32px; background: linear-gradient(135deg, #3b82f6 0%, #1d4ed8 100%); border-radius: 8px; display: flex; align-items: center; justify-content: center; color: white; font-weight: bold; font-size: 1rem; box-shadow: 0 2px 4px rgba(59, 130, 246, 0.2);'>V</div>
<div>
<h1 style='margin: 0; font-size: 1.25rem; font-weight: 600; color: #1e293b;'>
VayuChat
<span style='font-size: 0.875rem; font-weight: 400; color: #6b7280; margin-left: 0.5rem;'>β’ Environmental Data Analysis</span>
</h1>
</div>
</div>
""", unsafe_allow_html=True)
with header_col2:
st.markdown("<p style='margin: 0 0 0.25rem 0; font-size: 0.75rem; color: #6b7280;'>AI Model:</p>", unsafe_allow_html=True)
model_name = st.selectbox(
"Model:",
available_models,
index=default_index,
help="Choose your AI model",
label_visibility="collapsed"
)
st.markdown("<hr style='margin: 0.25rem 0; border: none; border-top: 1px solid #e2e8f0;'>", unsafe_allow_html=True)
# Load data with caching for better performance
@st.cache_data
def load_data():
return preprocess_and_load_df(join(self_path, "Data.csv"))
try:
df = load_data()
# Data loaded silently - no success message needed
except Exception as e:
st.error(f"Error loading data: {e}")
st.stop()
inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
image_path = "IITGN_Logo.png"
# Clean sidebar
with st.sidebar:
# Quick Queries Section - moved to top
st.markdown("### Quick Queries")
# Load quick prompts with caching
@st.cache_data
def load_questions():
questions = []
questions_file = join(self_path, "questions.txt")
if os.path.exists(questions_file):
try:
with open(questions_file, 'r', encoding='utf-8') as f:
content = f.read()
questions = [q.strip() for q in content.split("\n") if q.strip()]
except Exception as e:
questions = []
return questions
questions = load_questions()
# Add default prompts if file doesn't exist or is empty
if not questions:
questions = [
"Which month had highest pollution?",
"Which city has worst air quality?",
"Show annual PM2.5 average",
"Plot monthly average PM2.5 for 2023",
"List all cities by pollution level",
"Compare winter vs summer pollution",
"Show seasonal pollution patterns",
"Which areas exceed WHO guidelines?",
"What are peak pollution hours?",
"Show PM10 vs PM2.5 comparison",
"Which station records highest variability in PM2.5?",
"Calculate pollution improvement rate year-over-year by city",
"Identify cities with PM2.5 levels consistently above 50 ΞΌg/mΒ³ for >6 months",
"Find correlation between PM2.5 and PM10 across different seasons and cities",
"Compare weekday vs weekend levels",
"Plot yearly trend analysis",
"Show pollution distribution by city",
"Create correlation plot between pollutants"
]
# Quick query buttons in sidebar
selected_prompt = None
for i, question in enumerate(questions[:15]): # Show more questions
# Simple left-aligned buttons without icons for cleaner look
if st.button(question, key=f"sidebar_prompt_{i}", use_container_width=True, help=f"Click to analyze: {question}"):
if question != st.session_state.get("last_selected_prompt"):
selected_prompt = question
st.session_state.last_selected_prompt = question
st.markdown("---")
# Clear Chat Button
if st.button("Clear Chat", use_container_width=True):
st.session_state.responses = []
st.session_state.processing = False
st.session_state.session_id = str(uuid.uuid4())
try:
st.rerun()
except AttributeError:
st.experimental_rerun()
# Initialize session state first
if "responses" not in st.session_state:
st.session_state.responses = []
if "processing" not in st.session_state:
st.session_state.processing = False
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
def show_custom_response(response):
"""Custom response display function with improved styling"""
role = response.get("role", "assistant")
content = response.get("content", "")
if role == "user":
# User message with right alignment - reduced margins
st.markdown(f"""
<div style='display: flex; justify-content: flex-end; margin: 1rem 0;'>
<div class='user-message'>
{content}
</div>
</div>
""", unsafe_allow_html=True)
elif role == "assistant":
# Check if content is an image filename - don't display the filename text
is_image_path = isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg', '.jpeg'])
# Check if content is a pandas DataFrame
import pandas as pd
is_dataframe = isinstance(content, pd.DataFrame)
# Assistant message with left alignment - reduced margins
if not is_image_path and not is_dataframe:
st.markdown(f"""
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
<div class='assistant-message'>
<div class='assistant-info'>VayuChat</div>
{content if isinstance(content, str) else str(content)}
</div>
</div>
""", unsafe_allow_html=True)
elif is_dataframe:
# Display DataFrame with nice formatting
st.markdown("""
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
<div class='assistant-message'>
<div class='assistant-info'>VayuChat</div>
Here are the results:
</div>
</div>
""", unsafe_allow_html=True)
# Add context info for dataframes
st.markdown("""
<div class='context-info'>
π‘ This table is interactive - click column headers to sort, or scroll to view all data.
</div>
""", unsafe_allow_html=True)
st.dataframe(content, use_container_width=True)
# Show generated code with Streamlit expander
if response.get("gen_code"):
with st.expander("π View Generated Code", expanded=False):
st.code(response["gen_code"], language="python")
# Try to display image if content is a file path
try:
if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
if os.path.exists(content):
# Display image without showing filename
st.image(content, use_column_width=True)
return {"is_image": True}
# Also handle case where content shows filename but we want to show image
elif isinstance(content, str) and any(ext in content for ext in ['.png', '.jpg']):
# Extract potential filename from content
import re
filename_match = re.search(r'([^/\\]+\.(?:png|jpg|jpeg))', content)
if filename_match:
filename = filename_match.group(1)
if os.path.exists(filename):
st.image(filename, use_column_width=True)
return {"is_image": True}
except:
pass
return {"is_image": False}
def show_processing_indicator(model_name, question):
"""Show processing indicator with clear question and status"""
st.markdown(f"""
<div style='display: flex; justify-content: flex-start; margin: 1rem 0;'>
<div class='processing-indicator'>
<div style='font-size: 0.875rem; color: #6b7280; margin-bottom: 8px;'>π€ VayuChat β’ Processing with {model_name}</div>
<div style='background: rgba(255,255,255,0.9); padding: 0.75rem; border-radius: 8px; margin-bottom: 8px; border-left: 3px solid #3b82f6;'>
<strong style='color: #1e293b;'>Your Question:</strong><br>
<span style='color: #374151; font-size: 0.95rem;'>{question}</span>
</div>
<div style='display: flex; align-items: center; gap: 8px;'>
<div style='width: 16px; height: 16px; border: 2px solid #3b82f6; border-top: 2px solid transparent; border-radius: 50%; animation: spin 1s linear infinite;'></div>
<span style='color: #374151; font-style: italic;'>Analyzing data and generating response...</span>
</div>
</div>
</div>
<style>
@keyframes spin {{
0% {{ transform: rotate(0deg); }}
100% {{ transform: rotate(360deg); }}
}}
</style>
""", unsafe_allow_html=True)
# Main chat container with mockup styling
st.markdown("""
<div style='background: white; min-height: 60vh; padding: 1.5rem;'>
""", unsafe_allow_html=True)
chat_container = st.container()
with chat_container:
# Display chat history
for response_id, response in enumerate(st.session_state.responses):
status = show_custom_response(response)
# Show feedback section for assistant responses
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
error = response.get("error", "")
output = response.get("content", "")
last_prompt = response.get("last_prompt", "")
code = response.get("gen_code", "")
if "feedback" in st.session_state.responses[response_id]:
feedback_data = st.session_state.responses[response_id]["feedback"]
st.markdown(f"""
<div class='feedback-section'>
<strong>Your Feedback:</strong> {feedback_data.get('score', '')}
{f"- {feedback_data.get('text', '')}" if feedback_data.get('text') else ""}
</div>
""", unsafe_allow_html=True)
else:
# Beautiful feedback section
st.markdown("---")
st.markdown("**Rate this response:**")
# More detailed feedback options
col1, col2, col3, col4 = st.columns(4)
with col1:
excellent = st.button("π― Excellent", key=f"{feedback_key}_excellent", use_container_width=True)
with col2:
good = st.button("β
Good", key=f"{feedback_key}_good", use_container_width=True)
with col3:
okay = st.button("β οΈ Okay", key=f"{feedback_key}_okay", use_container_width=True)
with col4:
poor = st.button("β Poor", key=f"{feedback_key}_poor", use_container_width=True)
if excellent or good or okay or poor:
if excellent:
thumbs = "π― Excellent"
elif good:
thumbs = "β
Good"
elif okay:
thumbs = "β οΈ Okay"
else:
thumbs = "β Poor"
comments = st.text_area(
"Tell us more (optional):",
key=f"{feedback_key}_comments",
placeholder="What could be improved? Any suggestions?",
max_chars=500
)
if st.button("Submit Feedback", key=f"{feedback_key}_submit"):
feedback = {"score": thumbs, "text": comments}
# Upload feedback with enhanced error handling
if upload_feedback(feedback, error, output, last_prompt, code, status or {}):
st.session_state.responses[response_id]["feedback"] = feedback
time.sleep(1) # Give user time to see success message
st.rerun()
else:
st.error("Failed to submit feedback. Please try again.")
# Show processing indicator if processing
if st.session_state.get("processing"):
show_processing_indicator(
st.session_state.get("current_model", "Unknown"),
st.session_state.get("current_question", "Processing...")
)
# Chat input with better guidance
prompt = st.chat_input("π¬ Ask about air quality trends, compare cities, or request visualizations...", key="main_chat")
# Handle selected prompt from quick prompts
if selected_prompt:
prompt = selected_prompt
# Handle new queries
if prompt and not st.session_state.get("processing"):
# Prevent duplicate processing
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state.get("last_model_name", "")
if (prompt == last_prompt) and (model_name == last_model_name):
prompt = None
if prompt:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# Set processing state
st.session_state.processing = True
st.session_state.current_model = model_name
st.session_state.current_question = prompt
# Rerun to show processing indicator
st.rerun()
# Process the question if we're in processing state
if st.session_state.get("processing"):
prompt = st.session_state.get("current_question")
model_name = st.session_state.get("current_model")
try:
response = ask_question(model_name=model_name, question=prompt)
if not isinstance(response, dict):
response = {
"role": "assistant",
"content": "Error: Invalid response format",
"gen_code": "",
"ex_code": "",
"last_prompt": prompt,
"error": "Invalid response format"
}
response.setdefault("role", "assistant")
response.setdefault("content", "No content generated")
response.setdefault("gen_code", "")
response.setdefault("ex_code", "")
response.setdefault("last_prompt", prompt)
response.setdefault("error", None)
except Exception as e:
response = {
"role": "assistant",
"content": f"Sorry, I encountered an error: {str(e)}",
"gen_code": "",
"ex_code": "",
"last_prompt": prompt,
"error": str(e)
}
st.session_state.responses.append(response)
st.session_state["last_prompt"] = prompt
st.session_state["last_model_name"] = model_name
st.session_state.processing = False
# Clear processing state
if "current_model" in st.session_state:
del st.session_state.current_model
if "current_question" in st.session_state:
del st.session_state.current_question
st.rerun()
# Close chat container
st.markdown("</div>", unsafe_allow_html=True)
# Minimal auto-scroll - only scroll when processing
if st.session_state.get("processing"):
st.markdown("<script>scrollToBottom();</script>", unsafe_allow_html=True)
# Beautiful sidebar footer
# with st.sidebar:
# st.markdown("---")
# st.markdown("""
# <div class='contact-section'>
# <h4>π Paper on VayuChat</h4>
# <p>Learn more about VayuChat in our <a href='https://arxiv.org/abs/2411.12760' target='_blank'>Research Paper</a>.</p>
# </div>
# """, unsafe_allow_html=True)
# Dataset Info Section (matching mockup)
st.markdown("### Dataset Info")
st.markdown("""
<div style='background: #f1f5f9; border-radius: 8px; padding: 1rem; margin-bottom: 1rem;'>
<h4 style='margin: 0 0 0.5rem 0; color: #1e293b; font-size: 0.9rem;'>PM2.5 Air Quality Data</h4>
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Time Range:</strong> 2022 - 2023</p>
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Locations:</strong> 300+ cities across India</p>
<p style='margin: 0; font-size: 0.75rem; color: #475569;'><strong>Records:</strong> 100,000+ measurements</p>
</div>
""", unsafe_allow_html=True)
# Footer at absolute bottom
st.markdown("""
<div style='position: fixed; bottom: 0; left: 0; right: 0; background: white; border-top: 1px solid #e2e8f0; text-align: center; padding: 0.5rem; font-size: 0.7rem; color: #6b7280; z-index: 1000;'>
Β© 2024 IIT Gandhinagar Sustainability Lab
</div>
""", unsafe_allow_html=True)
|