File size: 19,501 Bytes
0a856ce 7df5b53 0a856ce 7df5b53 0a856ce 219bd2a 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce db29da7 0a856ce db29da7 ec6290f db29da7 3ce84d7 db29da7 0a856ce 0d96016 c372914 5e3867f 81c994f e4a1677 91be342 e4a1677 91be342 e4a1677 91be342 81c994f 0d96016 5e3867f c372914 831c017 81c994f c372914 0d96016 0a856ce 11a5d91 0a856ce 11a5d91 0a856ce db29da7 0a856ce 11a5d91 0a856ce 11a5d91 0a856ce 11a5d91 0a856ce 11a5d91 0a856ce bb0db22 0a856ce bb0db22 0a856ce bb0db22 0a856ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import os
import pandas as pd
from typing import Tuple
from PIL import Image
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import json
from datetime import datetime
from huggingface_hub import HfApi
import uuid
# FORCE reload environment variables
load_dotenv(override=True)
# Get API keys with explicit None handling and debugging
Groq_Token = os.getenv("GROQ_API_KEY")
hf_token = os.getenv("HF_TOKEN")
gemini_token = os.getenv("GEMINI_TOKEN")
# Debug print (remove in production)
print(f"Debug - Groq Token: {'Present' if Groq_Token else 'Missing'}")
print(f"Debug - Groq Token Value: {Groq_Token[:10] + '...' if Groq_Token else 'None'}")
print(f"Debug - Gemini Token: {'Present' if gemini_token else 'Missing'}")
models = {
"gpt-oss-20b": "openai/gpt-oss-20b",
"gpt-oss-120b": "openai/gpt-oss-120b",
"llama3.1": "llama-3.1-8b-instant",
"llama3.3": "llama-3.3-70b-versatile",
"deepseek-R1": "deepseek-r1-distill-llama-70b",
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
"llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct",
"gemini-pro": "gemini-1.5-pro"
}
def log_interaction(user_query, model_name, response_content, generated_code, execution_time, error_message=None, is_image=False):
"""Log user interactions to Hugging Face dataset"""
try:
if not hf_token or hf_token.strip() == "":
print("Warning: HF_TOKEN not available, skipping logging")
return
# Create log entry
log_entry = {
"timestamp": datetime.now().isoformat(),
"session_id": str(uuid.uuid4()),
"user_query": user_query,
"model_name": model_name,
"response_content": str(response_content),
"generated_code": generated_code or "",
"execution_time_seconds": execution_time,
"error_message": error_message or "",
"is_image_output": is_image,
"success": error_message is None
}
# Create DataFrame
df = pd.DataFrame([log_entry])
# Create unique filename with timestamp
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
random_id = str(uuid.uuid4())[:8]
filename = f"interaction_log_{timestamp_str}_{random_id}.parquet"
# Save locally first
local_path = f"/tmp/{filename}"
df.to_parquet(local_path, index=False)
# Upload to Hugging Face
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=f"data/{filename}",
repo_id="SustainabilityLabIITGN/VayuChat_logs",
repo_type="dataset",
)
# Clean up local file
if os.path.exists(local_path):
os.remove(local_path)
print(f"Successfully logged interaction to HuggingFace: {filename}")
except Exception as e:
print(f"Error logging interaction: {e}")
def preprocess_and_load_df(path: str) -> pd.DataFrame:
"""Load and preprocess the dataframe"""
try:
df = pd.read_csv(path)
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
return df
except Exception as e:
raise Exception(f"Error loading dataframe: {e}")
def get_from_user(prompt):
"""Format user prompt"""
return {"role": "user", "content": prompt}
def ask_question(model_name, question):
"""Ask question with comprehensive error handling and logging"""
start_time = datetime.now()
try:
# Reload environment variables to get fresh values
load_dotenv(override=True)
fresh_groq_token = os.getenv("GROQ_API_KEY")
fresh_gemini_token = os.getenv("GEMINI_TOKEN")
print(f"ask_question - Fresh Groq Token: {'Present' if fresh_groq_token else 'Missing'}")
# Check API availability with fresh tokens
if model_name == "gemini-pro":
if not fresh_gemini_token or fresh_gemini_token.strip() == "":
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = "Missing or empty API token"
# Log the failed interaction
log_interaction(
user_query=question,
model_name=model_name,
response_content="Gemini API token not available or empty",
generated_code="",
execution_time=execution_time,
error_message=error_msg,
is_image=False
)
return {
"role": "assistant",
"content": "Gemini API token not available or empty. Please set GEMINI_TOKEN in your environment variables.",
"gen_code": "",
"ex_code": "",
"last_prompt": question,
"error": error_msg
}
llm = ChatGoogleGenerativeAI(
model=models[model_name],
google_api_key=fresh_gemini_token,
temperature=0
)
else:
if not fresh_groq_token or fresh_groq_token.strip() == "":
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = "Missing or empty API token"
# Log the failed interaction
log_interaction(
user_query=question,
model_name=model_name,
response_content="Groq API token not available or empty",
generated_code="",
execution_time=execution_time,
error_message=error_msg,
is_image=False
)
return {
"role": "assistant",
"content": "Groq API token not available or empty. Please set GROQ_API_KEY in your environment variables and restart the application.",
"gen_code": "",
"ex_code": "",
"last_prompt": question,
"error": error_msg
}
# Test the API key by trying to create the client
try:
llm = ChatGroq(
model=models[model_name],
api_key=fresh_groq_token,
temperature=0.1
)
# Test with a simple call to verify the API key works
test_response = llm.invoke("Test")
print("API key test successful")
except Exception as api_error:
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = str(api_error)
if "organization_restricted" in error_msg.lower() or "unauthorized" in error_msg.lower():
response_content = "API Key Error: Your Groq API key appears to be invalid, expired, or restricted. Please check your API key in the .env file."
log_error_msg = f"API key validation failed: {error_msg}"
else:
response_content = f"API Connection Error: {error_msg}"
log_error_msg = error_msg
# Log the failed interaction
log_interaction(
user_query=question,
model_name=model_name,
response_content=response_content,
generated_code="",
execution_time=execution_time,
error_message=log_error_msg,
is_image=False
)
return {
"role": "assistant",
"content": response_content,
"gen_code": "",
"ex_code": "",
"last_prompt": question,
"error": log_error_msg
}
# Check if data file exists
if not os.path.exists("Data.csv"):
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = "Data file not found"
# Log the failed interaction
log_interaction(
user_query=question,
model_name=model_name,
response_content="Data.csv file not found",
generated_code="",
execution_time=execution_time,
error_message=error_msg,
is_image=False
)
return {
"role": "assistant",
"content": "Data.csv file not found. Please ensure the data file is in the correct location.",
"gen_code": "",
"ex_code": "",
"last_prompt": question,
"error": error_msg
}
df_check = pd.read_csv("Data.csv")
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
df_check = df_check.head(5)
new_line = "\n"
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
import uuid
import calendar
import numpy as np
# Set professional matplotlib styling
plt.rcParams.update({{
'font.size': 12,
'figure.dpi': 400,
'figure.facecolor': 'white',
'axes.facecolor': 'white',
'axes.edgecolor': '#e2e8f0',
'axes.linewidth': 1.2,
'axes.labelcolor': '#374151',
'axes.spines.top': False,
'axes.spines.right': False,
'axes.spines.left': True,
'axes.spines.bottom': True,
'axes.grid': True,
'grid.color': '#f1f5f9',
'grid.linewidth': 0.8,
'grid.alpha': 0.7,
'xtick.color': '#6b7280',
'ytick.color': '#6b7280',
'text.color': '#374151',
'figure.figsize': [12, 6],
'axes.prop_cycle': plt.cycler('color', ['#3b82f6', '#ef4444', '#10b981', '#f59e0b', '#8b5cf6', '#06b6d4'])
}})
df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
# Available columns and data types:
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
# Question: {question.strip()}
# Generate code to answer the question and save result in 'answer' variable
# If creating a plot, save it with a unique filename and store the filename in 'answer'
# If returning text/numbers, store the result directly in 'answer'
```"""
system_prompt = """Generate Python code to answer the user's question about air quality data.
IMPORTANT: Only generate Python code - no explanations, no thinking, just clean code.
WHEN TO USE DIFFERENT OUTPUT TYPES:
- Simple questions asking "Which city", "What month" (1-2 values) → TEXT ANSWERS (store text in 'answer')
- Questions asking "Plot", "Show chart", "Visualize" → PLOTS (store filename in 'answer')
- Questions with tabular data (lists of cities, rates, rankings, comparisons) → DATAFRAMES (store dataframe in 'answer')
- Examples of DATAFRAME outputs:
* Lists of cities with values (pollution levels, improvement rates)
* Rankings or comparisons across multiple entities
* Any result that would be >5 rows of data
* Calculate/List/Compare operations with multiple results
SAFETY & ROBUSTNESS RULES:
- Always check if data exists before processing: if df.empty: answer = "No data available"
- Handle missing values: use .dropna() or .fillna() appropriately
- Use try-except blocks for risky operations like indexing
- Validate city/location names exist in data before filtering
- Check for empty results after filtering: if filtered_df.empty: answer = "No data found for specified criteria"
- Use .round(2) for numerical results to avoid long decimals
- Handle division by zero: check denominators before division
- Validate date ranges exist in data
- Use proper string formatting for answers with units (μg/m³)
CRITICAL: PANDAS SYNTAX FIXES:
- ALWAYS convert pandas/numpy values to int before using as list indices
- Example: calendar.month_name[int(month_value)] NOT calendar.month_name[month_value]
- Use int() conversion for ANY value used as index: int(row['month']), int(max_idx), etc.
- When accessing pandas iloc results, wrap in int(): int(df.loc[idx, 'column'])
- CORRECT groupby syntax: df.groupby([df['col1'], df['col2'].dt.year]) NOT df.groupby(['col1', 'col2'].dt.year)
- Always reference DataFrame when accessing columns: df['column'].dt.year NOT 'column'].dt.year
- Use proper DataFrame column references in all operations
TECHNICAL REQUIREMENTS:
- Save final result in variable called 'answer'
- For TEXT: Store the direct answer as a string in 'answer'
- For PLOTS: Save with unique filename f"plot_{{uuid.uuid4().hex[:8]}}.png" and store filename in 'answer'
- For DATAFRAMES: Store the pandas DataFrame directly in 'answer' (e.g., answer = result_df)
- Always use .iloc or .loc properly for pandas indexing
- Close matplotlib figures with plt.close() to prevent memory leaks
- Use proper column name checks before accessing columns
- For dataframes, ensure proper column names and sorting for readability
"""
query = f"""{system_prompt}
Complete the following code to answer the user's question:
{template}
"""
# Make API call
if model_name == "gemini-pro":
response = llm.invoke(query)
answer = response.content
else:
response = llm.invoke(query)
answer = response.content
# Extract and execute code with enhanced error handling
try:
if "```python" in answer:
code_part = answer.split("```python")[1].split("```")[0]
else:
code_part = answer
full_code = f"""
{template.split("```python")[1].split("```")[0]}
{code_part}
"""
# Execute code in a controlled environment with better error handling
local_vars = {}
global_vars = {
'pd': pd,
'plt': plt,
'os': os,
'uuid': __import__('uuid'),
'calendar': __import__('calendar'),
'np': __import__('numpy')
}
exec(full_code, global_vars, local_vars)
# Get the answer
if 'answer' in local_vars:
answer_result = local_vars['answer']
else:
answer_result = "Code executed but no result was saved in 'answer' variable"
execution_time = (datetime.now() - start_time).total_seconds()
# Determine if output is an image
is_image = isinstance(answer_result, str) and any(answer_result.endswith(ext) for ext in ['.png', '.jpg', '.jpeg'])
# Log successful interaction
log_interaction(
user_query=question,
model_name=model_name,
response_content=str(answer_result),
generated_code=full_code,
execution_time=execution_time,
error_message=None,
is_image=is_image
)
return {
"role": "assistant",
"content": answer_result,
"gen_code": full_code,
"ex_code": full_code,
"last_prompt": question,
"error": None
}
except Exception as code_error:
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = str(code_error)
# Classify and provide user-friendly error messages
user_friendly_msg = "I encountered an error while analyzing your data. "
if "unmatched" in error_msg.lower() or "invalid syntax" in error_msg.lower():
user_friendly_msg += "There was a syntax error in the generated code (missing brackets or quotes). Please try rephrasing your question or try again."
elif "not defined" in error_msg.lower():
user_friendly_msg += "There was a variable naming error in the generated code. Please try asking the question again."
elif "has no attribute" in error_msg.lower():
user_friendly_msg += "There was an issue accessing data properties. Please try a simpler version of your question."
elif "division by zero" in error_msg.lower():
user_friendly_msg += "The calculation involved division by zero, possibly due to missing data. Please try a different time period or location."
elif "empty" in error_msg.lower() or "no data" in error_msg.lower():
user_friendly_msg += "No relevant data was found for your query. Please try adjusting the time period, location, or criteria."
else:
user_friendly_msg += f"Technical error: {error_msg}"
user_friendly_msg += "\n\n💡 **Suggestions:**\n- Try rephrasing your question\n- Use simpler terms\n- Check if the data exists for your specified criteria"
# Log the failed code execution
log_interaction(
user_query=question,
model_name=model_name,
response_content=user_friendly_msg,
generated_code=full_code if 'full_code' in locals() else "",
execution_time=execution_time,
error_message=error_msg,
is_image=False
)
return {
"role": "assistant",
"content": user_friendly_msg,
"gen_code": full_code if 'full_code' in locals() else "",
"ex_code": full_code if 'full_code' in locals() else "",
"last_prompt": question,
"error": error_msg
}
except Exception as e:
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = str(e)
# Handle specific API errors
if "organization_restricted" in error_msg:
response_content = "API Organization Restricted: Your API key access has been restricted. Please check your Groq API key or try generating a new one."
log_error_msg = "API access restricted"
elif "rate_limit" in error_msg.lower():
response_content = "Rate limit exceeded. Please wait a moment and try again."
log_error_msg = "Rate limit exceeded"
else:
response_content = f"Error: {error_msg}"
log_error_msg = error_msg
# Log the failed interaction
log_interaction(
user_query=question,
model_name=model_name,
response_content=response_content,
generated_code="",
execution_time=execution_time,
error_message=log_error_msg,
is_image=False
)
return {
"role": "assistant",
"content": response_content,
"gen_code": "",
"ex_code": "",
"last_prompt": question,
"error": log_error_msg
} |