File size: 19,501 Bytes
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df5b53
 
 
0a856ce
7df5b53
 
 
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219bd2a
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
0a856ce
 
 
 
 
 
 
 
bb0db22
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
0a856ce
 
 
 
 
 
 
 
bb0db22
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
0a856ce
 
bb0db22
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0db22
0a856ce
 
 
 
 
 
 
 
bb0db22
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db29da7
 
0a856ce
db29da7
 
ec6290f
 
db29da7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce84d7
 
db29da7
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
0d96016
 
 
 
c372914
 
 
 
 
 
 
 
 
5e3867f
81c994f
 
 
 
 
 
 
 
 
 
 
e4a1677
91be342
e4a1677
91be342
 
e4a1677
 
 
91be342
81c994f
0d96016
5e3867f
 
c372914
831c017
81c994f
 
c372914
0d96016
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a5d91
0a856ce
 
 
 
 
 
 
 
 
 
 
11a5d91
0a856ce
 
 
 
 
db29da7
 
 
0a856ce
 
 
 
 
 
 
 
11a5d91
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a5d91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a856ce
 
 
 
11a5d91
0a856ce
 
 
 
 
 
 
 
11a5d91
0a856ce
 
 
 
 
 
 
 
 
 
 
 
bb0db22
0a856ce
 
bb0db22
0a856ce
 
bb0db22
0a856ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
import pandas as pd
from typing import Tuple
from PIL import Image
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import json
from datetime import datetime
from huggingface_hub import HfApi
import uuid

# FORCE reload environment variables
load_dotenv(override=True)

# Get API keys with explicit None handling and debugging
Groq_Token = os.getenv("GROQ_API_KEY")
hf_token = os.getenv("HF_TOKEN")
gemini_token = os.getenv("GEMINI_TOKEN")

# Debug print (remove in production)
print(f"Debug - Groq Token: {'Present' if Groq_Token else 'Missing'}")
print(f"Debug - Groq Token Value: {Groq_Token[:10] + '...' if Groq_Token else 'None'}")
print(f"Debug - Gemini Token: {'Present' if gemini_token else 'Missing'}")

models = {
    "gpt-oss-20b": "openai/gpt-oss-20b",
    "gpt-oss-120b": "openai/gpt-oss-120b",
    "llama3.1": "llama-3.1-8b-instant",
    "llama3.3": "llama-3.3-70b-versatile",
    "deepseek-R1": "deepseek-r1-distill-llama-70b",
    "llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
    "llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct",
    "gemini-pro": "gemini-1.5-pro"
}

def log_interaction(user_query, model_name, response_content, generated_code, execution_time, error_message=None, is_image=False):
    """Log user interactions to Hugging Face dataset"""
    try:
        if not hf_token or hf_token.strip() == "":
            print("Warning: HF_TOKEN not available, skipping logging")
            return
        
        # Create log entry
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "session_id": str(uuid.uuid4()),
            "user_query": user_query,
            "model_name": model_name,
            "response_content": str(response_content),
            "generated_code": generated_code or "",
            "execution_time_seconds": execution_time,
            "error_message": error_message or "",
            "is_image_output": is_image,
            "success": error_message is None
        }
        
        # Create DataFrame
        df = pd.DataFrame([log_entry])
        
        # Create unique filename with timestamp
        timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_id = str(uuid.uuid4())[:8]
        filename = f"interaction_log_{timestamp_str}_{random_id}.parquet"
        
        # Save locally first
        local_path = f"/tmp/{filename}"
        df.to_parquet(local_path, index=False)
        
        # Upload to Hugging Face
        api = HfApi(token=hf_token)
        api.upload_file(
            path_or_fileobj=local_path,
            path_in_repo=f"data/{filename}",
            repo_id="SustainabilityLabIITGN/VayuChat_logs",
            repo_type="dataset",
        )
        
        # Clean up local file
        if os.path.exists(local_path):
            os.remove(local_path)
            
        print(f"Successfully logged interaction to HuggingFace: {filename}")
        
    except Exception as e:
        print(f"Error logging interaction: {e}")

def preprocess_and_load_df(path: str) -> pd.DataFrame:
    """Load and preprocess the dataframe"""
    try:
        df = pd.read_csv(path)
        df["Timestamp"] = pd.to_datetime(df["Timestamp"])
        return df
    except Exception as e:
        raise Exception(f"Error loading dataframe: {e}")



def get_from_user(prompt):
    """Format user prompt"""
    return {"role": "user", "content": prompt}




def ask_question(model_name, question):
    """Ask question with comprehensive error handling and logging"""
    start_time = datetime.now()
    try:
        # Reload environment variables to get fresh values
        load_dotenv(override=True)
        fresh_groq_token = os.getenv("GROQ_API_KEY")
        fresh_gemini_token = os.getenv("GEMINI_TOKEN")
        
        print(f"ask_question - Fresh Groq Token: {'Present' if fresh_groq_token else 'Missing'}")
        
        # Check API availability with fresh tokens
        if model_name == "gemini-pro":
            if not fresh_gemini_token or fresh_gemini_token.strip() == "":
                execution_time = (datetime.now() - start_time).total_seconds()
                error_msg = "Missing or empty API token"
                
                # Log the failed interaction
                log_interaction(
                    user_query=question,
                    model_name=model_name,
                    response_content="Gemini API token not available or empty",
                    generated_code="",
                    execution_time=execution_time,
                    error_message=error_msg,
                    is_image=False
                )
                
                return {
                    "role": "assistant", 
                    "content": "Gemini API token not available or empty. Please set GEMINI_TOKEN in your environment variables.", 
                    "gen_code": "", 
                    "ex_code": "", 
                    "last_prompt": question,
                    "error": error_msg
                }
            llm = ChatGoogleGenerativeAI(
                model=models[model_name], 
                google_api_key=fresh_gemini_token,
                temperature=0
            )
        else:
            if not fresh_groq_token or fresh_groq_token.strip() == "":
                execution_time = (datetime.now() - start_time).total_seconds()
                error_msg = "Missing or empty API token"
                
                # Log the failed interaction
                log_interaction(
                    user_query=question,
                    model_name=model_name,
                    response_content="Groq API token not available or empty",
                    generated_code="",
                    execution_time=execution_time,
                    error_message=error_msg,
                    is_image=False
                )
                
                return {
                    "role": "assistant", 
                    "content": "Groq API token not available or empty. Please set GROQ_API_KEY in your environment variables and restart the application.", 
                    "gen_code": "", 
                    "ex_code": "", 
                    "last_prompt": question,
                    "error": error_msg
                }
            
            # Test the API key by trying to create the client
            try:
                llm = ChatGroq(
                    model=models[model_name], 
                    api_key=fresh_groq_token,
                    temperature=0.1
                )
                # Test with a simple call to verify the API key works
                test_response = llm.invoke("Test")
                print("API key test successful")
            except Exception as api_error:
                execution_time = (datetime.now() - start_time).total_seconds()
                error_msg = str(api_error)
                
                if "organization_restricted" in error_msg.lower() or "unauthorized" in error_msg.lower():
                    response_content = "API Key Error: Your Groq API key appears to be invalid, expired, or restricted. Please check your API key in the .env file."
                    log_error_msg = f"API key validation failed: {error_msg}"
                else:
                    response_content = f"API Connection Error: {error_msg}"
                    log_error_msg = error_msg
                
                # Log the failed interaction
                log_interaction(
                    user_query=question,
                    model_name=model_name,
                    response_content=response_content,
                    generated_code="",
                    execution_time=execution_time,
                    error_message=log_error_msg,
                    is_image=False
                )
                
                return {
                    "role": "assistant", 
                    "content": response_content, 
                    "gen_code": "", 
                    "ex_code": "", 
                    "last_prompt": question,
                    "error": log_error_msg
                }

        # Check if data file exists
        if not os.path.exists("Data.csv"):
            execution_time = (datetime.now() - start_time).total_seconds()
            error_msg = "Data file not found"
            
            # Log the failed interaction
            log_interaction(
                user_query=question,
                model_name=model_name,
                response_content="Data.csv file not found",
                generated_code="",
                execution_time=execution_time,
                error_message=error_msg,
                is_image=False
            )
            
            return {
                "role": "assistant", 
                "content": "Data.csv file not found. Please ensure the data file is in the correct location.", 
                "gen_code": "", 
                "ex_code": "", 
                "last_prompt": question,
                "error": error_msg
            }

        df_check = pd.read_csv("Data.csv")
        df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
        df_check = df_check.head(5)

        new_line = "\n"

        template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
import uuid
import calendar
import numpy as np

# Set professional matplotlib styling
plt.rcParams.update({{
    'font.size': 12,
    'figure.dpi': 400,
    'figure.facecolor': 'white',
    'axes.facecolor': 'white',
    'axes.edgecolor': '#e2e8f0',
    'axes.linewidth': 1.2,
    'axes.labelcolor': '#374151',
    'axes.spines.top': False,
    'axes.spines.right': False,
    'axes.spines.left': True,
    'axes.spines.bottom': True,
    'axes.grid': True,
    'grid.color': '#f1f5f9',
    'grid.linewidth': 0.8,
    'grid.alpha': 0.7,
    'xtick.color': '#6b7280',
    'ytick.color': '#6b7280',
    'text.color': '#374151',
    'figure.figsize': [12, 6],
    'axes.prop_cycle': plt.cycler('color', ['#3b82f6', '#ef4444', '#10b981', '#f59e0b', '#8b5cf6', '#06b6d4'])
}})

df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])

# Available columns and data types:
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}

# Question: {question.strip()}
# Generate code to answer the question and save result in 'answer' variable
# If creating a plot, save it with a unique filename and store the filename in 'answer'
# If returning text/numbers, store the result directly in 'answer'
```"""

        system_prompt = """Generate Python code to answer the user's question about air quality data.

IMPORTANT: Only generate Python code - no explanations, no thinking, just clean code.

WHEN TO USE DIFFERENT OUTPUT TYPES:
- Simple questions asking "Which city", "What month" (1-2 values) → TEXT ANSWERS (store text in 'answer')
- Questions asking "Plot", "Show chart", "Visualize" → PLOTS (store filename in 'answer')  
- Questions with tabular data (lists of cities, rates, rankings, comparisons) → DATAFRAMES (store dataframe in 'answer')
- Examples of DATAFRAME outputs:
  * Lists of cities with values (pollution levels, improvement rates)
  * Rankings or comparisons across multiple entities
  * Any result that would be >5 rows of data
  * Calculate/List/Compare operations with multiple results

SAFETY & ROBUSTNESS RULES:
- Always check if data exists before processing: if df.empty: answer = "No data available"
- Handle missing values: use .dropna() or .fillna() appropriately
- Use try-except blocks for risky operations like indexing
- Validate city/location names exist in data before filtering
- Check for empty results after filtering: if filtered_df.empty: answer = "No data found for specified criteria"
- Use .round(2) for numerical results to avoid long decimals
- Handle division by zero: check denominators before division
- Validate date ranges exist in data
- Use proper string formatting for answers with units (μg/m³)

CRITICAL: PANDAS SYNTAX FIXES:
- ALWAYS convert pandas/numpy values to int before using as list indices
- Example: calendar.month_name[int(month_value)] NOT calendar.month_name[month_value]  
- Use int() conversion for ANY value used as index: int(row['month']), int(max_idx), etc.
- When accessing pandas iloc results, wrap in int(): int(df.loc[idx, 'column'])
- CORRECT groupby syntax: df.groupby([df['col1'], df['col2'].dt.year]) NOT df.groupby(['col1', 'col2'].dt.year)
- Always reference DataFrame when accessing columns: df['column'].dt.year NOT 'column'].dt.year
- Use proper DataFrame column references in all operations

TECHNICAL REQUIREMENTS:
- Save final result in variable called 'answer'
- For TEXT: Store the direct answer as a string in 'answer'
- For PLOTS: Save with unique filename f"plot_{{uuid.uuid4().hex[:8]}}.png" and store filename in 'answer'
- For DATAFRAMES: Store the pandas DataFrame directly in 'answer' (e.g., answer = result_df)
- Always use .iloc or .loc properly for pandas indexing
- Close matplotlib figures with plt.close() to prevent memory leaks
- Use proper column name checks before accessing columns
- For dataframes, ensure proper column names and sorting for readability
"""

        query = f"""{system_prompt}

Complete the following code to answer the user's question:

{template}
"""
        
        # Make API call
        if model_name == "gemini-pro":
            response = llm.invoke(query)
            answer = response.content
        else:
            response = llm.invoke(query)
            answer = response.content
        
        # Extract and execute code with enhanced error handling
        try:
            if "```python" in answer:
                code_part = answer.split("```python")[1].split("```")[0]
            else:
                code_part = answer
            
            full_code = f"""
{template.split("```python")[1].split("```")[0]}
{code_part}
"""
            
            # Execute code in a controlled environment with better error handling
            local_vars = {}
            global_vars = {
                'pd': pd,
                'plt': plt,
                'os': os,
                'uuid': __import__('uuid'),
                'calendar': __import__('calendar'),
                'np': __import__('numpy')
            }
            
            exec(full_code, global_vars, local_vars)
            
            # Get the answer
            if 'answer' in local_vars:
                answer_result = local_vars['answer']
            else:
                answer_result = "Code executed but no result was saved in 'answer' variable"
            
            execution_time = (datetime.now() - start_time).total_seconds()
            
            # Determine if output is an image
            is_image = isinstance(answer_result, str) and any(answer_result.endswith(ext) for ext in ['.png', '.jpg', '.jpeg'])
            
            # Log successful interaction
            log_interaction(
                user_query=question,
                model_name=model_name,
                response_content=str(answer_result),
                generated_code=full_code,
                execution_time=execution_time,
                error_message=None,
                is_image=is_image
            )
                
            return {
                "role": "assistant", 
                "content": answer_result, 
                "gen_code": full_code, 
                "ex_code": full_code, 
                "last_prompt": question,
                "error": None
            }
            
        except Exception as code_error:
            execution_time = (datetime.now() - start_time).total_seconds()
            error_msg = str(code_error)
            
            # Classify and provide user-friendly error messages
            user_friendly_msg = "I encountered an error while analyzing your data. "
            
            if "unmatched" in error_msg.lower() or "invalid syntax" in error_msg.lower():
                user_friendly_msg += "There was a syntax error in the generated code (missing brackets or quotes). Please try rephrasing your question or try again."
            elif "not defined" in error_msg.lower():
                user_friendly_msg += "There was a variable naming error in the generated code. Please try asking the question again."
            elif "has no attribute" in error_msg.lower():
                user_friendly_msg += "There was an issue accessing data properties. Please try a simpler version of your question."
            elif "division by zero" in error_msg.lower():
                user_friendly_msg += "The calculation involved division by zero, possibly due to missing data. Please try a different time period or location."
            elif "empty" in error_msg.lower() or "no data" in error_msg.lower():
                user_friendly_msg += "No relevant data was found for your query. Please try adjusting the time period, location, or criteria."
            else:
                user_friendly_msg += f"Technical error: {error_msg}"
            
            user_friendly_msg += "\n\n💡 **Suggestions:**\n- Try rephrasing your question\n- Use simpler terms\n- Check if the data exists for your specified criteria"
            
            # Log the failed code execution
            log_interaction(
                user_query=question,
                model_name=model_name,
                response_content=user_friendly_msg,
                generated_code=full_code if 'full_code' in locals() else "",
                execution_time=execution_time,
                error_message=error_msg,
                is_image=False
            )
            
            return {
                "role": "assistant", 
                "content": user_friendly_msg, 
                "gen_code": full_code if 'full_code' in locals() else "", 
                "ex_code": full_code if 'full_code' in locals() else "", 
                "last_prompt": question,
                "error": error_msg
            }
            
    except Exception as e:
        execution_time = (datetime.now() - start_time).total_seconds()
        error_msg = str(e)
        
        # Handle specific API errors
        if "organization_restricted" in error_msg:
            response_content = "API Organization Restricted: Your API key access has been restricted. Please check your Groq API key or try generating a new one."
            log_error_msg = "API access restricted"
        elif "rate_limit" in error_msg.lower():
            response_content = "Rate limit exceeded. Please wait a moment and try again."
            log_error_msg = "Rate limit exceeded"
        else:
            response_content = f"Error: {error_msg}"
            log_error_msg = error_msg
        
        # Log the failed interaction
        log_interaction(
            user_query=question,
            model_name=model_name,
            response_content=response_content,
            generated_code="",
            execution_time=execution_time,
            error_message=log_error_msg,
            is_image=False
        )
        
        return {
            "role": "assistant", 
            "content": response_content, 
            "gen_code": "", 
            "ex_code": "", 
            "last_prompt": question,
            "error": log_error_msg
        }