VayuChat / app.py
Vedant-acharya's picture
Update app.py
aef3ace verified
raw
history blame
24.6 kB
import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import (
preprocess_and_load_df,
load_agent,
ask_agent,
decorate_with_code,
show_response,
get_from_user,
load_smart_df,
ask_question,
)
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
from datasets import load_dataset, get_dataset_config_info, Dataset
from PIL import Image
import time
import uuid
# Page config with beautiful theme
st.set_page_config(
page_title="VayuBuddy - AI Air Quality Assistant",
page_icon="🌬️",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for beautiful styling
st.markdown("""
<style>
/* Clean app background */
.stApp {
background-color: #ffffff;
color: #212529;
font-family: 'Segoe UI', sans-serif;
}
/* Sidebar */
[data-testid="stSidebar"] {
background-color: #f8f9fa;
border-right: 1px solid #dee2e6;
padding: 1rem;
}
/* Main title */
.main-title {
text-align: center;
color: #343a40;
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 0.5rem;
}
/* Subtitle */
.subtitle {
text-align: center;
color: #6c757d;
font-size: 1.1rem;
margin-bottom: 1.5rem;
}
/* Instructions */
.instructions {
background-color: #f1f3f5;
border-left: 4px solid #0d6efd;
padding: 1rem;
margin-bottom: 1.5rem;
border-radius: 6px;
color: #495057;
text-align: left;
}
/* Quick prompt buttons */
.quick-prompt-container {
display: flex;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 1.5rem;
padding: 1rem;
background-color: #f8f9fa;
border-radius: 10px;
border: 1px solid #dee2e6;
}
.quick-prompt-btn {
background-color: #0d6efd;
color: white;
border: none;
padding: 8px 16px;
border-radius: 20px;
font-size: 0.9rem;
cursor: pointer;
transition: all 0.2s ease;
white-space: nowrap;
}
.quick-prompt-btn:hover {
background-color: #0b5ed7;
transform: translateY(-2px);
}
/* User message styling */
.user-message {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 15px 20px;
border-radius: 20px 20px 5px 20px;
margin: 10px 0;
margin-left: auto;
margin-right: 0;
max-width: 80%;
position: relative;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
.user-info {
font-size: 0.8rem;
opacity: 0.8;
margin-bottom: 5px;
text-align: right;
}
/* Assistant message styling */
.assistant-message {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
color: white;
padding: 15px 20px;
border-radius: 20px 20px 20px 5px;
margin: 10px 0;
margin-left: 0;
margin-right: auto;
max-width: 80%;
position: relative;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
.assistant-info {
font-size: 0.8rem;
opacity: 0.8;
margin-bottom: 5px;
}
/* Processing indicator */
.processing-indicator {
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
color: #333;
padding: 15px 20px;
border-radius: 20px 20px 20px 5px;
margin: 10px 0;
margin-left: 0;
margin-right: auto;
max-width: 80%;
position: relative;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.7; }
100% { opacity: 1; }
}
/* Feedback box */
.feedback-section {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
/* Success and error messages */
.success-message {
background-color: #d1e7dd;
color: #0f5132;
padding: 1rem;
border-radius: 6px;
border: 1px solid #badbcc;
}
.error-message {
background-color: #f8d7da;
color: #842029;
padding: 1rem;
border-radius: 6px;
border: 1px solid #f5c2c7;
}
/* Chat input */
.stChatInput {
border-radius: 6px;
border: 1px solid #ced4da;
background: #ffffff;
}
/* Button */
.stButton > button {
background-color: #0d6efd;
color: white;
border-radius: 6px;
padding: 0.5rem 1.25rem;
border: none;
font-weight: 600;
transition: background-color 0.2s ease;
}
.stButton > button:hover {
background-color: #0b5ed7;
}
/* Code details styling */
.code-details {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 10px;
margin-top: 10px;
}
/* Hide default menu and footer */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
/* Auto scroll */
.main-container {
height: 70vh;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
# Auto-scroll JavaScript
st.markdown("""
<script>
function scrollToBottom() {
setTimeout(function() {
const mainContainer = document.querySelector('.main-container');
if (mainContainer) {
mainContainer.scrollTop = mainContainer.scrollHeight;
}
window.scrollTo(0, document.body.scrollHeight);
}, 100);
}
</script>
""", unsafe_allow_html=True)
# FORCE reload environment variables
load_dotenv(override=True)
# Get API keys
Groq_Token = os.getenv("GROQ_API_KEY")
hf_token = os.getenv("HF_TOKEN")
gemini_token = os.getenv("GEMINI_TOKEN")
models = {
"gpt-oss-20b": "openai/gpt-oss-20b",
"gpt-oss-120b": "openai/gpt-oss-120b",
"llama3.1": "llama-3.1-8b-instant",
"llama3.3": "llama-3.3-70b-versatile",
"deepseek-R1": "deepseek-r1-distill-llama-70b",
"llama4 maverik":"meta-llama/llama-4-maverick-17b-128e-instruct",
"llama4 scout":"meta-llama/llama-4-scout-17b-16e-instruct",
"gemini-pro": "gemini-1.5-pro"
}
self_path = os.path.dirname(os.path.abspath(__file__))
# Initialize session ID for this session
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
def upload_feedback(feedback, error, output, last_prompt, code, status):
"""Enhanced feedback upload function with better logging and error handling"""
try:
if not hf_token or hf_token.strip() == "":
st.warning("⚠️ Cannot upload feedback - HF_TOKEN not available")
return False
# Create comprehensive feedback data
feedback_data = {
"timestamp": datetime.now().isoformat(),
"session_id": st.session_state.session_id,
"feedback_score": feedback.get("score", ""),
"feedback_comment": feedback.get("text", ""),
"user_prompt": last_prompt,
"ai_output": str(output),
"generated_code": code or "",
"error_message": error or "",
"is_image_output": status.get("is_image", False),
"success": not bool(error)
}
# Create unique folder name with timestamp
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
random_id = str(uuid.uuid4())[:8]
folder_name = f"feedback_{timestamp_str}_{random_id}"
# Create markdown feedback file
markdown_content = f"""# VayuBuddy Feedback Report
## Session Information
- **Timestamp**: {feedback_data['timestamp']}
- **Session ID**: {feedback_data['session_id']}
## User Interaction
**Prompt**: {feedback_data['user_prompt']}
## AI Response
**Output**: {feedback_data['ai_output']}
## Generated Code
```python
{feedback_data['generated_code']}
```
## Technical Details
- **Error Message**: {feedback_data['error_message']}
- **Is Image Output**: {feedback_data['is_image_output']}
- **Success**: {feedback_data['success']}
## User Feedback
- **Score**: {feedback_data['feedback_score']}
- **Comments**: {feedback_data['feedback_comment']}
"""
# Save markdown file locally
markdown_filename = f"{folder_name}.md"
markdown_local_path = f"/tmp/{markdown_filename}"
with open(markdown_local_path, "w", encoding="utf-8") as f:
f.write(markdown_content)
# Upload to Hugging Face
api = HfApi(token=hf_token)
# Upload markdown feedback
api.upload_file(
path_or_fileobj=markdown_local_path,
path_in_repo=f"data/{markdown_filename}",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
# Upload image if it exists and is an image output
if status.get("is_image", False) and isinstance(output, str) and os.path.exists(output):
try:
image_filename = f"{folder_name}_plot.png"
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{image_filename}",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
except Exception as img_error:
print(f"Error uploading image: {img_error}")
# Clean up local files
if os.path.exists(markdown_local_path):
os.remove(markdown_local_path)
st.success("πŸŽ‰ Feedback uploaded successfully!")
return True
except Exception as e:
st.error(f"❌ Error uploading feedback: {e}")
print(f"Feedback upload error: {e}")
return False
# Beautiful header
st.markdown("<h1 class='main-title'>🌬️ VayuBuddy</h1>", unsafe_allow_html=True)
st.markdown("""
<div class='subtitle'>
<strong>AI-Powered Air Quality Insights</strong><br>
Simplifying pollution analysis using conversational AI.
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class='instructions'>
<strong>How to Use:</strong><br>
Select a model from the sidebar and ask questions directly in the chat. Use quick prompts below for common queries.
</div>
""", unsafe_allow_html=True)
os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
# Load data with error handling
try:
df = preprocess_and_load_df(join(self_path, "Data.csv"))
st.success("βœ… Data loaded successfully!")
except Exception as e:
st.error(f"❌ Error loading data: {e}")
st.stop()
inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
image_path = "IITGN_Logo.png"
# Beautiful sidebar
with st.sidebar:
# Logo and title
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
if os.path.exists(image_path):
st.image(image_path, use_column_width=True)
# Session info
st.markdown(f"**Session ID**: `{st.session_state.session_id[:8]}...`")
# Model selection
st.markdown("### πŸ€– AI Model Selection")
# Filter available models
available_models = []
model_names = list(models.keys())
groq_models = []
gemini_models = []
for model_name in model_names:
if "gemini" not in model_name:
groq_models.append(model_name)
else:
gemini_models.append(model_name)
if Groq_Token and Groq_Token.strip():
available_models.extend(groq_models)
if gemini_token and gemini_token.strip():
available_models.extend(gemini_models)
if not available_models:
st.error("❌ No API keys available! Please set up your API keys in the .env file")
st.stop()
model_name = st.selectbox(
"Choose your AI assistant:",
available_models,
help="Different models have different strengths. Try them all!"
)
# Model descriptions
model_descriptions = {
"llama3.1": "πŸ¦™ Fast and efficient for general queries",
"llama3.3": "πŸ¦™ Most advanced LLaMA model for complex reasoning",
"mistral": "⚑ Balanced performance and speed",
"gemma": "πŸ’Ž Google's lightweight model",
"gemini-pro": "🧠 Google's most powerful model",
"gpt-oss-20b": "πŸ“˜ OpenAI's compact open-weight GPT for everyday tasks",
"gpt-oss-120b": "πŸ“š OpenAI's massive open-weight GPT for nuanced responses",
"deepseek-R1": "πŸ” DeepSeek's distilled LLaMA model for efficient reasoning",
"llama4 maverik": "πŸš€ Meta's LLaMA 4 Maverick β€” high-performance instruction model",
"llama4 scout": "πŸ›°οΈ Meta's LLaMA 4 Scout β€” optimized for adaptive reasoning"
}
if model_name in model_descriptions:
st.info(model_descriptions[model_name])
st.markdown("---")
# Logging status
st.markdown("### πŸ“Š Logging Status")
if hf_token and hf_token.strip():
st.success("βœ… Logging enabled")
st.caption("Interactions are being logged to HuggingFace")
else:
st.warning("⚠️ Logging disabled")
st.caption("HF_TOKEN not available")
st.markdown("---")
# Clear Chat Button
if st.button("🧹 Clear Chat"):
st.session_state.responses = []
st.session_state.processing = False
# Generate new session ID for new chat
st.session_state.session_id = str(uuid.uuid4())
try:
st.rerun()
except AttributeError:
st.experimental_rerun()
st.markdown("---")
# Chat History in Sidebar
with st.expander("πŸ“œ Chat History"):
for i, response in enumerate(st.session_state.get("responses", [])):
if response.get("role") == "user":
st.markdown(f"**You:** {response.get('content', '')[:50]}...")
elif response.get("role") == "assistant":
content = response.get('content', '')
if isinstance(content, str) and len(content) > 50:
st.markdown(f"**VayuBuddy:** {content[:50]}...")
else:
st.markdown(f"**VayuBuddy:** {str(content)[:50]}...")
st.markdown("---")
# Load quick prompts
questions = []
questions_file = join(self_path, "questions.txt")
if os.path.exists(questions_file):
try:
with open(questions_file, 'r', encoding='utf-8') as f:
content = f.read()
questions = [q.strip() for q in content.split("\n") if q.strip()]
print(f"Loaded {len(questions)} quick prompts") # Debug
except Exception as e:
st.error(f"Error loading questions: {e}")
questions = []
# Add some default prompts if file doesn't exist or is empty
if not questions:
questions = [
"What is the average PM2.5 level in the dataset?",
"Show me the air quality trend over time",
"Which pollutant has the highest concentration?",
"Create a correlation plot between different pollutants",
"What are the peak pollution hours?",
"Compare weekday vs weekend pollution levels"
]
# Quick prompts section (horizontal)
st.markdown("### πŸ’­ Quick Prompts")
# Create columns for horizontal layout
cols_per_row = 2 # Reduced to 2 for better fit
rows = [questions[i:i + cols_per_row] for i in range(0, len(questions), cols_per_row)]
selected_prompt = None
for row_idx, row in enumerate(rows):
cols = st.columns(len(row))
for col_idx, question in enumerate(row):
with cols[col_idx]:
# Create unique key using row and column indices
unique_key = f"prompt_btn_{row_idx}_{col_idx}"
button_text = f"πŸ“ {question[:35]}{'...' if len(question) > 35 else ''}"
if st.button(button_text,
key=unique_key,
help=question,
use_container_width=True):
selected_prompt = question
st.markdown("---")
# Initialize chat history and processing state
if "responses" not in st.session_state:
st.session_state.responses = []
if "processing" not in st.session_state:
st.session_state.processing = False
def show_custom_response(response):
"""Custom response display function"""
role = response.get("role", "assistant")
content = response.get("content", "")
if role == "user":
st.markdown(f"""
<div class='user-message'>
<div class='user-info'>You</div>
{content}
</div>
""", unsafe_allow_html=True)
elif role == "assistant":
st.markdown(f"""
<div class='assistant-message'>
<div class='assistant-info'>πŸ€– VayuBuddy</div>
{content if isinstance(content, str) else str(content)}
</div>
""", unsafe_allow_html=True)
# Show generated code if available
if response.get("gen_code"):
with st.expander("πŸ“‹ View Generated Code"):
st.code(response["gen_code"], language="python")
# Try to display image if content is a file path
try:
if isinstance(content, str) and (content.endswith('.png') or content.endswith('.jpg')):
if os.path.exists(content):
st.image(content)
return {"is_image": True}
except:
pass
return {"is_image": False}
def show_processing_indicator(model_name, question):
"""Show processing indicator"""
st.markdown(f"""
<div class='processing-indicator'>
<div class='assistant-info'>πŸ€– VayuBuddy β€’ Processing with {model_name}</div>
<strong>Question:</strong> {question}<br>
<em>πŸ”„ Generating response...</em>
</div>
""", unsafe_allow_html=True)
# Main chat container
chat_container = st.container()
with chat_container:
# Display chat history
for response_id, response in enumerate(st.session_state.responses):
status = show_custom_response(response)
# Show feedback section for assistant responses
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
error = response.get("error", "")
output = response.get("content", "")
last_prompt = response.get("last_prompt", "")
code = response.get("gen_code", "")
if "feedback" in st.session_state.responses[response_id]:
feedback_data = st.session_state.responses[response_id]["feedback"]
st.markdown(f"""
<div class='feedback-section'>
<strong>πŸ“ Your Feedback:</strong> {feedback_data.get('score', '')}
{f"- {feedback_data.get('text', '')}" if feedback_data.get('text') else ""}
</div>
""", unsafe_allow_html=True)
else:
# Beautiful feedback section
st.markdown("---")
st.markdown("**How was this response?**")
col1, col2 = st.columns(2)
with col1:
thumbs_up = st.button("πŸ‘ Helpful", key=f"{feedback_key}_up", use_container_width=True)
with col2:
thumbs_down = st.button("πŸ‘Ž Not Helpful", key=f"{feedback_key}_down", use_container_width=True)
if thumbs_up or thumbs_down:
thumbs = "πŸ‘ Helpful" if thumbs_up else "πŸ‘Ž Not Helpful"
comments = st.text_area(
"πŸ’¬ Tell us more (optional):",
key=f"{feedback_key}_comments",
placeholder="What could be improved? Any suggestions?",
max_chars=500
)
if st.button("πŸš€ Submit Feedback", key=f"{feedback_key}_submit"):
feedback = {"score": thumbs, "text": comments}
# Upload feedback with enhanced error handling
if upload_feedback(feedback, error, output, last_prompt, code, status or {}):
st.session_state.responses[response_id]["feedback"] = feedback
time.sleep(1) # Give user time to see success message
st.rerun()
else:
st.error("Failed to submit feedback. Please try again.")
# Show processing indicator if processing
if st.session_state.get("processing"):
show_processing_indicator(
st.session_state.get("current_model", "Unknown"),
st.session_state.get("current_question", "Processing...")
)
# Chat input (always visible at bottom)
prompt = st.chat_input("πŸ’¬ Ask me anything about air quality!", key="main_chat")
# Handle selected prompt from quick prompts
if selected_prompt:
prompt = selected_prompt
# Handle new queries
if prompt and not st.session_state.get("processing"):
# Prevent duplicate processing
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state.get("last_model_name", "")
if (prompt == last_prompt) and (model_name == last_model_name):
prompt = None
if prompt:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# Set processing state
st.session_state.processing = True
st.session_state.current_model = model_name
st.session_state.current_question = prompt
# Rerun to show processing indicator
st.rerun()
# Process the question if we're in processing state
if st.session_state.get("processing"):
prompt = st.session_state.get("current_question")
model_name = st.session_state.get("current_model")
try:
response = ask_question(model_name=model_name, question=prompt)
if not isinstance(response, dict):
response = {
"role": "assistant",
"content": "❌ Error: Invalid response format",
"gen_code": "",
"ex_code": "",
"last_prompt": prompt,
"error": "Invalid response format"
}
response.setdefault("role", "assistant")
response.setdefault("content", "No content generated")
response.setdefault("gen_code", "")
response.setdefault("ex_code", "")
response.setdefault("last_prompt", prompt)
response.setdefault("error", None)
except Exception as e:
response = {
"role": "assistant",
"content": f"Sorry, I encountered an error: {str(e)}",
"gen_code": "",
"ex_code": "",
"last_prompt": prompt,
"error": str(e)
}
st.session_state.responses.append(response)
st.session_state["last_prompt"] = prompt
st.session_state["last_model_name"] = model_name
st.session_state.processing = False
# Clear processing state
if "current_model" in st.session_state:
del st.session_state.current_model
if "current_question" in st.session_state:
del st.session_state.current_question
st.rerun()
# Auto-scroll to bottom
if st.session_state.responses:
st.markdown("<script>scrollToBottom();</script>", unsafe_allow_html=True)
# Beautiful sidebar footer
with st.sidebar:
st.markdown("---")
st.markdown("""
<div class='contact-section'>
<h4>πŸ“„ Paper on VayuBuddy</h4>
<p>Learn more about VayuBuddy in our <a href='https://arxiv.org/abs/2411.12760' target='_blank'>Research Paper</a>.</p>
</div>
""", unsafe_allow_html=True)
# Statistics (if logging is enabled)
if hf_token and hf_token.strip():
st.markdown("### πŸ“ˆ Session Stats")
total_interactions = len([r for r in st.session_state.get("responses", []) if r.get("role") == "assistant"])
st.metric("Interactions", total_interactions)
feedbacks_given = len([r for r in st.session_state.get("responses", []) if r.get("role") == "assistant" and "feedback" in r])
st.metric("Feedbacks Given", feedbacks_given)
# Footer
st.markdown("""
<div style='text-align: center; margin-top: 3rem; padding: 2rem; background: rgba(255,255,255,0.1); border-radius: 15px;'>
<h3>🌍 Together for Cleaner Air</h3>
<p>VayuBuddy - Empowering environmental awareness through AI</p>
<small>Β© 2024 IIT Gandhinagar Sustainability Lab</small>
</div>
""", unsafe_allow_html=True)