File size: 14,537 Bytes
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652e321
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652e321
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652e321
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652e321
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import json
import torch
import numpy as np
import soundfile as sf
import re
from pathlib import Path
from typing import Optional, Union, List, Dict, Any
from transformers import WhisperProcessor, WhisperForConditionalGeneration

from .whisperx.audio import load_audio, SAMPLE_RATE
from .whisperx.vads import Pyannote, Silero
from .whisperx.types import TranscriptionResult, SingleSegment, AlignedTranscriptionResult
from .whisperx.alignment import load_align_model, align


class MazeWhisperModel:
    def __init__(self, model_name: str = "sven33/maze-whisper-3000", device: str = "cuda"):
        self.device = device
        self.model_name = model_name
        
        print(f"Loading Maze Whisper model: {model_name}")
        self.processor = WhisperProcessor.from_pretrained(model_name)
        self.model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
        self.tokenizer = self.processor.tokenizer
        self.model.eval()
    
    def transcribe_segment(self, audio_segment: np.ndarray) -> str:
        with torch.no_grad():
            inputs = self.processor(
                audio_segment, 
                sampling_rate=SAMPLE_RATE, 
                return_tensors="pt"
            ).to(self.device)
            
            generated_ids = self.model.generate(
                inputs["input_features"],
                max_length=448,
                num_beams=5,
                early_stopping=True,
                use_cache=True
            )
            
            transcription = self.processor.batch_decode(
                generated_ids, 
                skip_special_tokens=True
            )[0]
            
            return transcription.strip()


class WhisperXPipeline:
    def __init__(self, model_name: str = "sven33/maze-whisper-3000", device: str = "cuda", 
                 vad_method: str = "pyannote", chunk_size: int = 30, 
                 enable_alignment: bool = True, align_language: str = "en"):
        self.device = device
        self.chunk_size = chunk_size
        self.enable_alignment = enable_alignment
        self.align_language = align_language
        
        self.whisper_model = MazeWhisperModel(model_name, device)
        self._init_vad_model(vad_method)
        
        self.align_model = None
        self.align_metadata = None
        if enable_alignment:
            self._init_alignment_model()
    
    def _init_vad_model(self, vad_method: str):
        default_vad_options = {
            "chunk_size": self.chunk_size,
            "vad_onset": 0.500,
            "vad_offset": 0.363
        }
        
        if vad_method == "silero":
            self.vad_model = Silero(**default_vad_options)
        elif vad_method == "pyannote":
            device_vad = f'cuda:0' if self.device == 'cuda' else self.device
            self.vad_model = Pyannote(torch.device(device_vad), **default_vad_options)
        else:
            raise ValueError(f"Invalid vad_method: {vad_method}")
    
    def _init_alignment_model(self):
        try:
            print(f"Loading alignment model for language: {self.align_language}")
            self.align_model, self.align_metadata = load_align_model(
                self.align_language, 
                self.device
            )
        except Exception as e:
            print(f"Warning: Could not load alignment model: {e}")
            print("Continuing without forced alignment...")
            self.enable_alignment = False
    
    def transcribe(self, audio: Union[str, np.ndarray], verbose: bool = False) -> Union[TranscriptionResult, AlignedTranscriptionResult]:
        if isinstance(audio, str):
            audio_path = audio
            audio = load_audio(audio)
        else:
            audio_path = None
        
        if hasattr(self.vad_model, 'preprocess_audio'):
            waveform = self.vad_model.preprocess_audio(audio)
        else:
            waveform = torch.from_numpy(audio).unsqueeze(0)
        
        vad_segments = self.vad_model({"waveform": waveform, "sample_rate": SAMPLE_RATE})
        
        if hasattr(self.vad_model, 'merge_chunks'):
            vad_segments = self.vad_model.merge_chunks(
                vad_segments,
                self.chunk_size,
                onset=0.500,
                offset=0.363,
            )
        
        segments: List[SingleSegment] = []
        
        print(f"Processing {len(vad_segments)} segments...")
        
        for idx, seg in enumerate(vad_segments):
            start_sample = int(seg['start'] * SAMPLE_RATE)
            end_sample = int(seg['end'] * SAMPLE_RATE)
            audio_segment = audio[start_sample:end_sample]
            
            text = self.whisper_model.transcribe_segment(audio_segment)
            
            if not text.strip() or len(text.strip()) < 2:
                if verbose:
                    print(f"Skipping empty/short segment {idx+1}: [{seg['start']:.3f}s - {seg['end']:.3f}s]")
                continue
            
            if verbose:
                print(f"Segment {idx+1}/{len(vad_segments)}: [{seg['start']:.3f}s - {seg['end']:.3f}s] {text}")
            
            segments.append({
                "text": text,
                "start": round(seg['start'], 3),
                "end": round(seg['end'], 3)
            })
        
        result = {"segments": segments, "language": self.align_language}
        
        if self.enable_alignment and self.align_model is not None and len(segments) > 0:
            print("Preparing segments for forced alignment...")
            
            cleaned_segments = []
            for segment in segments:
                original_text = segment["text"]
                cleaned_text = clean_text_for_alignment(original_text)
                
                if cleaned_text.strip() and len(cleaned_text.strip()) >= 2:
                    cleaned_segment = {
                        "text": cleaned_text,
                        "start": segment["start"],
                        "end": segment["end"]
                    }
                    cleaned_segments.append({
                        "cleaned": cleaned_segment,
                        "original": segment
                    })
            
            if len(cleaned_segments) > 0:
                print(f"Performing forced alignment on {len(cleaned_segments)} segments...")
                try:
                    segments_for_alignment = [item["cleaned"] for item in cleaned_segments]
                    
                    aligned_result = align(
                        segments_for_alignment,
                        self.align_model,
                        self.align_metadata,
                        audio_path if audio_path else audio,
                        self.device,
                        interpolate_method="nearest",
                        return_char_alignments=False,
                        print_progress=verbose
                    )
                    
                    final_segments = []
                    aligned_segments = aligned_result.get("segments", [])
                    
                    for i, aligned_seg in enumerate(aligned_segments):
                        if i < len(cleaned_segments):
                            original_segment = cleaned_segments[i]["original"]
                            
                            final_segment = {
                                "text": original_segment["text"],
                                "start": aligned_seg["start"],
                                "end": aligned_seg["end"],
                                "words": aligned_seg.get("words", [])
                            }
                            
                            if "words" in final_segment and final_segment["words"]:
                                final_segment["words"] = fix_word_alignment(
                                    final_segment["words"],
                                    original_segment["text"],
                                    cleaned_segments[i]["cleaned"]["text"]
                                )
                            
                            final_segments.append(final_segment)
                    
                    final_result = {
                        "segments": final_segments,
                        "word_segments": [],
                        "language": self.align_language
                    }
                    
                    for segment in final_segments:
                        if "words" in segment:
                            final_result["word_segments"].extend(segment["words"])
                    
                    print(f"Alignment completed! {len(final_segments)} segments with {len(final_result['word_segments'])} words")
                    return final_result
                    
                except Exception as e:
                    print(f"Warning: Alignment failed: {e}")
                    print("Returning transcription without alignment...")
            else:
                print("Warning: No segments remaining after cleaning for alignment")
        
        return result


def clean_text_for_alignment(text: str) -> str:
    cleaned_text = re.sub(r'<[^>]*>', '', text)
    cleaned_text = re.sub(r'[\[\]{}]', '', cleaned_text)
    cleaned_text = re.sub(r'[^\w\s\.\,\?\!\-\']', '', cleaned_text)
    cleaned_text = cleaned_text.replace('.', '')
    cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
    return cleaned_text


def fix_word_alignment(words: List[Dict], original_text: str, cleaned_text: str) -> List[Dict]:
    try:
        original_tokens = original_text.split()
        cleaned_tokens = cleaned_text.split()
        
        if len(words) == 0 or len(cleaned_tokens) == 0:
            return words
        
        if abs(len(original_tokens) - len(cleaned_tokens)) <= 1:
            return words
        
        # print(f"Warning: Word alignment might be imperfect due to text cleaning")
        return words
        
    except Exception as e:
        print(f"Warning: Could not fix word alignment: {e}")
        return words


def generate_session_id() -> str:
    session_data_dir = Path("./session_data")
    
    if not session_data_dir.exists():
        return "000001"
    
    existing_sessions = []
    for item in session_data_dir.iterdir():
        if item.is_dir() and item.name.isdigit() and len(item.name) == 6:
            existing_sessions.append(int(item.name))
    
    if not existing_sessions:
        return "000001"
    
    next_id = max(existing_sessions) + 1
    return f"{next_id:06d}"




def translate_audio_file(model: str = "mazeWhisper", audio_path: str = "", device: str = "cuda", 
                        enable_alignment: bool = True, align_language: str = "en", original_filename: str = None) -> Dict[str, Any]:
    if model != "mazeWhisper":
        raise ValueError("Currently only 'mazeWhisper' model is supported")
    
    if not os.path.exists(audio_path):
        raise FileNotFoundError(f"Audio file not found: {audio_path}")
    
    session_id = generate_session_id()
    session_data_dir = Path("./session_data")
    session_dir = session_data_dir / session_id
    session_dir.mkdir(parents=True, exist_ok=True)
    
    print(f"Session ID: {session_id}")
    print(f"Session directory: {session_dir}")
    
    try:
        pipeline = WhisperXPipeline(
            model_name="sven33/maze-whisper-3000",
            device=device,
            vad_method="pyannote",
            chunk_size=10,
            enable_alignment=enable_alignment,
            align_language=align_language
        )
        
        audio = load_audio(audio_path)
        
        print("Starting transcription...")
        result = pipeline.transcribe(audio_path, verbose=True)
        
        has_word_timestamps = (
            isinstance(result, dict) and 
            "segments" in result and 
            len(result["segments"]) > 0 and 
            "words" in result["segments"][0]
        )
        
        formatted_segments = []
        for segment in result["segments"]:
            formatted_segment = {
                "start": segment["start"],
                "end": segment["end"],
                "speaker": "",  # Initialize as empty
                "text": segment["text"],
                "words": []
            }
            
            if "words" in segment and segment["words"]:
                for word_info in segment["words"]:
                    formatted_word = {
                        "word": word_info["word"],
                        "start": word_info["start"],
                        "end": word_info["end"]
                    }
                    formatted_segment["words"].append(formatted_word)
            
            formatted_segments.append(formatted_segment)
        
        # Create final output structure with segments wrapper
        filename = original_filename if original_filename else os.path.basename(audio_path)
        output_data = {
            "filename": filename,
            "segments": formatted_segments
        }
        
        json_path = session_dir / "transcription.json"
        with open(json_path, 'w', encoding='utf-8') as f:
            json.dump(output_data, f, ensure_ascii=False, indent=2)
        
        print(f"Transcription saved: {json_path}")
        
        if has_word_timestamps:
            total_words = sum(len(seg.get("words", [])) for seg in result["segments"])
            print(f"Forced alignment completed! Total words with timestamps: {total_words}")
        elif enable_alignment:
            print("Forced alignment was enabled but failed - only segment-level timestamps available")
        else:
            print("Forced alignment disabled - only segment-level timestamps available")
        
        
        print(f"Transcription complete! Session: {session_id}")
        
        result_data = {
            "session_id": session_id,
            "audio_path": audio_path,
            "model": "sven33/maze-whisper-3000",
            "device": device,
            "alignment_enabled": enable_alignment,
            "has_word_timestamps": has_word_timestamps,
            "align_language": align_language,
            "transcription": result
        }
        
        return result_data, session_id
        
    except Exception as e:
        print(f"Error during transcription: {str(e)}")
        raise


if __name__ == "__main__":
    print("use main_socket to test transcription model")