File size: 14,537 Bytes
5806e12 652e321 5806e12 652e321 5806e12 652e321 5806e12 652e321 5806e12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os
import json
import torch
import numpy as np
import soundfile as sf
import re
from pathlib import Path
from typing import Optional, Union, List, Dict, Any
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from .whisperx.audio import load_audio, SAMPLE_RATE
from .whisperx.vads import Pyannote, Silero
from .whisperx.types import TranscriptionResult, SingleSegment, AlignedTranscriptionResult
from .whisperx.alignment import load_align_model, align
class MazeWhisperModel:
def __init__(self, model_name: str = "sven33/maze-whisper-3000", device: str = "cuda"):
self.device = device
self.model_name = model_name
print(f"Loading Maze Whisper model: {model_name}")
self.processor = WhisperProcessor.from_pretrained(model_name)
self.model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
self.tokenizer = self.processor.tokenizer
self.model.eval()
def transcribe_segment(self, audio_segment: np.ndarray) -> str:
with torch.no_grad():
inputs = self.processor(
audio_segment,
sampling_rate=SAMPLE_RATE,
return_tensors="pt"
).to(self.device)
generated_ids = self.model.generate(
inputs["input_features"],
max_length=448,
num_beams=5,
early_stopping=True,
use_cache=True
)
transcription = self.processor.batch_decode(
generated_ids,
skip_special_tokens=True
)[0]
return transcription.strip()
class WhisperXPipeline:
def __init__(self, model_name: str = "sven33/maze-whisper-3000", device: str = "cuda",
vad_method: str = "pyannote", chunk_size: int = 30,
enable_alignment: bool = True, align_language: str = "en"):
self.device = device
self.chunk_size = chunk_size
self.enable_alignment = enable_alignment
self.align_language = align_language
self.whisper_model = MazeWhisperModel(model_name, device)
self._init_vad_model(vad_method)
self.align_model = None
self.align_metadata = None
if enable_alignment:
self._init_alignment_model()
def _init_vad_model(self, vad_method: str):
default_vad_options = {
"chunk_size": self.chunk_size,
"vad_onset": 0.500,
"vad_offset": 0.363
}
if vad_method == "silero":
self.vad_model = Silero(**default_vad_options)
elif vad_method == "pyannote":
device_vad = f'cuda:0' if self.device == 'cuda' else self.device
self.vad_model = Pyannote(torch.device(device_vad), **default_vad_options)
else:
raise ValueError(f"Invalid vad_method: {vad_method}")
def _init_alignment_model(self):
try:
print(f"Loading alignment model for language: {self.align_language}")
self.align_model, self.align_metadata = load_align_model(
self.align_language,
self.device
)
except Exception as e:
print(f"Warning: Could not load alignment model: {e}")
print("Continuing without forced alignment...")
self.enable_alignment = False
def transcribe(self, audio: Union[str, np.ndarray], verbose: bool = False) -> Union[TranscriptionResult, AlignedTranscriptionResult]:
if isinstance(audio, str):
audio_path = audio
audio = load_audio(audio)
else:
audio_path = None
if hasattr(self.vad_model, 'preprocess_audio'):
waveform = self.vad_model.preprocess_audio(audio)
else:
waveform = torch.from_numpy(audio).unsqueeze(0)
vad_segments = self.vad_model({"waveform": waveform, "sample_rate": SAMPLE_RATE})
if hasattr(self.vad_model, 'merge_chunks'):
vad_segments = self.vad_model.merge_chunks(
vad_segments,
self.chunk_size,
onset=0.500,
offset=0.363,
)
segments: List[SingleSegment] = []
print(f"Processing {len(vad_segments)} segments...")
for idx, seg in enumerate(vad_segments):
start_sample = int(seg['start'] * SAMPLE_RATE)
end_sample = int(seg['end'] * SAMPLE_RATE)
audio_segment = audio[start_sample:end_sample]
text = self.whisper_model.transcribe_segment(audio_segment)
if not text.strip() or len(text.strip()) < 2:
if verbose:
print(f"Skipping empty/short segment {idx+1}: [{seg['start']:.3f}s - {seg['end']:.3f}s]")
continue
if verbose:
print(f"Segment {idx+1}/{len(vad_segments)}: [{seg['start']:.3f}s - {seg['end']:.3f}s] {text}")
segments.append({
"text": text,
"start": round(seg['start'], 3),
"end": round(seg['end'], 3)
})
result = {"segments": segments, "language": self.align_language}
if self.enable_alignment and self.align_model is not None and len(segments) > 0:
print("Preparing segments for forced alignment...")
cleaned_segments = []
for segment in segments:
original_text = segment["text"]
cleaned_text = clean_text_for_alignment(original_text)
if cleaned_text.strip() and len(cleaned_text.strip()) >= 2:
cleaned_segment = {
"text": cleaned_text,
"start": segment["start"],
"end": segment["end"]
}
cleaned_segments.append({
"cleaned": cleaned_segment,
"original": segment
})
if len(cleaned_segments) > 0:
print(f"Performing forced alignment on {len(cleaned_segments)} segments...")
try:
segments_for_alignment = [item["cleaned"] for item in cleaned_segments]
aligned_result = align(
segments_for_alignment,
self.align_model,
self.align_metadata,
audio_path if audio_path else audio,
self.device,
interpolate_method="nearest",
return_char_alignments=False,
print_progress=verbose
)
final_segments = []
aligned_segments = aligned_result.get("segments", [])
for i, aligned_seg in enumerate(aligned_segments):
if i < len(cleaned_segments):
original_segment = cleaned_segments[i]["original"]
final_segment = {
"text": original_segment["text"],
"start": aligned_seg["start"],
"end": aligned_seg["end"],
"words": aligned_seg.get("words", [])
}
if "words" in final_segment and final_segment["words"]:
final_segment["words"] = fix_word_alignment(
final_segment["words"],
original_segment["text"],
cleaned_segments[i]["cleaned"]["text"]
)
final_segments.append(final_segment)
final_result = {
"segments": final_segments,
"word_segments": [],
"language": self.align_language
}
for segment in final_segments:
if "words" in segment:
final_result["word_segments"].extend(segment["words"])
print(f"Alignment completed! {len(final_segments)} segments with {len(final_result['word_segments'])} words")
return final_result
except Exception as e:
print(f"Warning: Alignment failed: {e}")
print("Returning transcription without alignment...")
else:
print("Warning: No segments remaining after cleaning for alignment")
return result
def clean_text_for_alignment(text: str) -> str:
cleaned_text = re.sub(r'<[^>]*>', '', text)
cleaned_text = re.sub(r'[\[\]{}]', '', cleaned_text)
cleaned_text = re.sub(r'[^\w\s\.\,\?\!\-\']', '', cleaned_text)
cleaned_text = cleaned_text.replace('.', '')
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
def fix_word_alignment(words: List[Dict], original_text: str, cleaned_text: str) -> List[Dict]:
try:
original_tokens = original_text.split()
cleaned_tokens = cleaned_text.split()
if len(words) == 0 or len(cleaned_tokens) == 0:
return words
if abs(len(original_tokens) - len(cleaned_tokens)) <= 1:
return words
# print(f"Warning: Word alignment might be imperfect due to text cleaning")
return words
except Exception as e:
print(f"Warning: Could not fix word alignment: {e}")
return words
def generate_session_id() -> str:
session_data_dir = Path("./session_data")
if not session_data_dir.exists():
return "000001"
existing_sessions = []
for item in session_data_dir.iterdir():
if item.is_dir() and item.name.isdigit() and len(item.name) == 6:
existing_sessions.append(int(item.name))
if not existing_sessions:
return "000001"
next_id = max(existing_sessions) + 1
return f"{next_id:06d}"
def translate_audio_file(model: str = "mazeWhisper", audio_path: str = "", device: str = "cuda",
enable_alignment: bool = True, align_language: str = "en", original_filename: str = None) -> Dict[str, Any]:
if model != "mazeWhisper":
raise ValueError("Currently only 'mazeWhisper' model is supported")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
session_id = generate_session_id()
session_data_dir = Path("./session_data")
session_dir = session_data_dir / session_id
session_dir.mkdir(parents=True, exist_ok=True)
print(f"Session ID: {session_id}")
print(f"Session directory: {session_dir}")
try:
pipeline = WhisperXPipeline(
model_name="sven33/maze-whisper-3000",
device=device,
vad_method="pyannote",
chunk_size=10,
enable_alignment=enable_alignment,
align_language=align_language
)
audio = load_audio(audio_path)
print("Starting transcription...")
result = pipeline.transcribe(audio_path, verbose=True)
has_word_timestamps = (
isinstance(result, dict) and
"segments" in result and
len(result["segments"]) > 0 and
"words" in result["segments"][0]
)
formatted_segments = []
for segment in result["segments"]:
formatted_segment = {
"start": segment["start"],
"end": segment["end"],
"speaker": "", # Initialize as empty
"text": segment["text"],
"words": []
}
if "words" in segment and segment["words"]:
for word_info in segment["words"]:
formatted_word = {
"word": word_info["word"],
"start": word_info["start"],
"end": word_info["end"]
}
formatted_segment["words"].append(formatted_word)
formatted_segments.append(formatted_segment)
# Create final output structure with segments wrapper
filename = original_filename if original_filename else os.path.basename(audio_path)
output_data = {
"filename": filename,
"segments": formatted_segments
}
json_path = session_dir / "transcription.json"
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=2)
print(f"Transcription saved: {json_path}")
if has_word_timestamps:
total_words = sum(len(seg.get("words", [])) for seg in result["segments"])
print(f"Forced alignment completed! Total words with timestamps: {total_words}")
elif enable_alignment:
print("Forced alignment was enabled but failed - only segment-level timestamps available")
else:
print("Forced alignment disabled - only segment-level timestamps available")
print(f"Transcription complete! Session: {session_id}")
result_data = {
"session_id": session_id,
"audio_path": audio_path,
"model": "sven33/maze-whisper-3000",
"device": device,
"alignment_enabled": enable_alignment,
"has_word_timestamps": has_word_timestamps,
"align_language": align_language,
"transcription": result
}
return result_data, session_id
except Exception as e:
print(f"Error during transcription: {str(e)}")
raise
if __name__ == "__main__":
print("use main_socket to test transcription model") |