File size: 8,729 Bytes
5806e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import gc
import os
import warnings

import numpy as np
import torch

from whisperx.alignment import align, load_align_model
from whisperx.asr import load_model
from whisperx.audio import load_audio
from whisperx.diarize import DiarizationPipeline, assign_word_speakers
from whisperx.types import AlignedTranscriptionResult, TranscriptionResult
from whisperx.utils import LANGUAGES, TO_LANGUAGE_CODE, get_writer


def transcribe_task(args: dict, parser: argparse.ArgumentParser):
    """Transcription task to be called from CLI.

    Args:
        args: Dictionary of command-line arguments.
        parser: argparse.ArgumentParser object.
    """
    # fmt: off

    model_name: str = args.pop("model")
    batch_size: int = args.pop("batch_size")
    model_dir: str = args.pop("model_dir")
    model_cache_only: bool = args.pop("model_cache_only")
    output_dir: str = args.pop("output_dir")
    output_format: str = args.pop("output_format")
    device: str = args.pop("device")
    device_index: int = args.pop("device_index")
    compute_type: str = args.pop("compute_type")
    verbose: bool = args.pop("verbose")

    # model_flush: bool = args.pop("model_flush")
    os.makedirs(output_dir, exist_ok=True)

    align_model: str = args.pop("align_model")
    interpolate_method: str = args.pop("interpolate_method")
    no_align: bool = args.pop("no_align")
    task: str = args.pop("task")
    if task == "translate":
        # translation cannot be aligned
        no_align = True

    return_char_alignments: bool = args.pop("return_char_alignments")

    hf_token: str = args.pop("hf_token")
    vad_method: str = args.pop("vad_method")
    vad_onset: float = args.pop("vad_onset")
    vad_offset: float = args.pop("vad_offset")

    chunk_size: int = args.pop("chunk_size")

    diarize: bool = args.pop("diarize")
    min_speakers: int = args.pop("min_speakers")
    max_speakers: int = args.pop("max_speakers")
    diarize_model_name: str = args.pop("diarize_model")
    print_progress: bool = args.pop("print_progress")
    return_speaker_embeddings: bool = args.pop("speaker_embeddings")

    if return_speaker_embeddings and not diarize:
        warnings.warn("--speaker_embeddings has no effect without --diarize")

    if args["language"] is not None:
        args["language"] = args["language"].lower()
        if args["language"] not in LANGUAGES:
            if args["language"] in TO_LANGUAGE_CODE:
                args["language"] = TO_LANGUAGE_CODE[args["language"]]
            else:
                raise ValueError(f"Unsupported language: {args['language']}")

    if model_name.endswith(".en") and args["language"] != "en":
        if args["language"] is not None:
            warnings.warn(
                f"{model_name} is an English-only model but received '{args['language']}'; using English instead."
            )
        args["language"] = "en"
    align_language = (
        args["language"] if args["language"] is not None else "en"
    )  # default to loading english if not specified

    temperature = args.pop("temperature")
    if (increment := args.pop("temperature_increment_on_fallback")) is not None:
        temperature = tuple(np.arange(temperature, 1.0 + 1e-6, increment))
    else:
        temperature = [temperature]

    faster_whisper_threads = 4
    if (threads := args.pop("threads")) > 0:
        torch.set_num_threads(threads)
        faster_whisper_threads = threads

    asr_options = {
        "beam_size": args.pop("beam_size"),
        "patience": args.pop("patience"),
        "length_penalty": args.pop("length_penalty"),
        "temperatures": temperature,
        "compression_ratio_threshold": args.pop("compression_ratio_threshold"),
        "log_prob_threshold": args.pop("logprob_threshold"),
        "no_speech_threshold": args.pop("no_speech_threshold"),
        "condition_on_previous_text": False,
        "initial_prompt": args.pop("initial_prompt"),
        "suppress_tokens": [int(x) for x in args.pop("suppress_tokens").split(",")],
        "suppress_numerals": args.pop("suppress_numerals"),
    }

    writer = get_writer(output_format, output_dir)
    word_options = ["highlight_words", "max_line_count", "max_line_width"]
    if no_align:
        for option in word_options:
            if args[option]:
                parser.error(f"--{option} not possible with --no_align")
    if args["max_line_count"] and not args["max_line_width"]:
        warnings.warn("--max_line_count has no effect without --max_line_width")
    writer_args = {arg: args.pop(arg) for arg in word_options}

    # Part 1: VAD & ASR Loop
    results = []
    tmp_results = []
    # model = load_model(model_name, device=device, download_root=model_dir)
    model = load_model(
        model_name,
        device=device,
        device_index=device_index,
        download_root=model_dir,
        compute_type=compute_type,
        language=args["language"],
        asr_options=asr_options,
        vad_method=vad_method,
        vad_options={
            "chunk_size": chunk_size,
            "vad_onset": vad_onset,
            "vad_offset": vad_offset,
        },
        task=task,
        local_files_only=model_cache_only,
        threads=faster_whisper_threads,
    )

    for audio_path in args.pop("audio"):
        audio = load_audio(audio_path)
        # >> VAD & ASR
        print(">>Performing transcription...")
        result: TranscriptionResult = model.transcribe(
            audio,
            batch_size=batch_size,
            chunk_size=chunk_size,
            print_progress=print_progress,
            verbose=verbose,
        )
        results.append((result, audio_path))

    # Unload Whisper and VAD
    del model
    gc.collect()
    torch.cuda.empty_cache()

    # Part 2: Align Loop
    if not no_align:
        tmp_results = results
        results = []
        align_model, align_metadata = load_align_model(
            align_language, device, model_name=align_model
        )
        for result, audio_path in tmp_results:
            # >> Align
            if len(tmp_results) > 1:
                input_audio = audio_path
            else:
                # lazily load audio from part 1
                input_audio = audio

            if align_model is not None and len(result["segments"]) > 0:
                if result.get("language", "en") != align_metadata["language"]:
                    # load new language
                    print(
                        f"New language found ({result['language']})! Previous was ({align_metadata['language']}), loading new alignment model for new language..."
                    )
                    align_model, align_metadata = load_align_model(
                        result["language"], device
                    )
                print(">>Performing alignment...")
                result: AlignedTranscriptionResult = align(
                    result["segments"],
                    align_model,
                    align_metadata,
                    input_audio,
                    device,
                    interpolate_method=interpolate_method,
                    return_char_alignments=return_char_alignments,
                    print_progress=print_progress,
                )

            results.append((result, audio_path))

        # Unload align model
        del align_model
        gc.collect()
        torch.cuda.empty_cache()

    # >> Diarize
    if diarize:
        if hf_token is None:
            print(
                "Warning, no --hf_token used, needs to be saved in environment variable, otherwise will throw error loading diarization model..."
            )
        tmp_results = results
        print(">>Performing diarization...")
        print(">>Using model:", diarize_model_name)
        results = []
        diarize_model = DiarizationPipeline(model_name=diarize_model_name, use_auth_token=hf_token, device=device)
        for result, input_audio_path in tmp_results:
            diarize_result = diarize_model(
                input_audio_path, 
                min_speakers=min_speakers, 
                max_speakers=max_speakers, 
                return_embeddings=return_speaker_embeddings
            )

            if return_speaker_embeddings:
                diarize_segments, speaker_embeddings = diarize_result
            else:
                diarize_segments = diarize_result
                speaker_embeddings = None

            result = assign_word_speakers(diarize_segments, result, speaker_embeddings)
            results.append((result, input_audio_path))
    # >> Write
    for result, audio_path in results:
        result["language"] = align_language
        writer(result, audio_path, writer_args)