Spaces:
Runtime error
Runtime error
File size: 15,302 Bytes
63deadc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
from __future__ import annotations
import asyncio
import logging
import time
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
Tuple,
Union,
)
from uuid import UUID
from langchain_core.agents import (
AgentAction,
AgentFinish,
AgentStep,
)
from langchain_core.callbacks import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain_core.load.dump import dumpd
from langchain_core.outputs import RunInfo
from langchain_core.runnables.utils import AddableDict
from langchain_core.tools import BaseTool
from langchain_core.utils.input import get_color_mapping
from langchain.schema import RUN_KEY
from langchain.utilities.asyncio import asyncio_timeout
if TYPE_CHECKING:
from langchain.agents.agent import AgentExecutor, NextStepOutput
logger = logging.getLogger(__name__)
class AgentExecutorIterator:
"""Iterator for AgentExecutor."""
def __init__(
self,
agent_executor: AgentExecutor,
inputs: Any,
callbacks: Callbacks = None,
*,
tags: Optional[list[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
run_name: Optional[str] = None,
run_id: Optional[UUID] = None,
include_run_info: bool = False,
yield_actions: bool = False,
):
"""
Initialize the AgentExecutorIterator with the given AgentExecutor,
inputs, and optional callbacks.
"""
self._agent_executor = agent_executor
self.inputs = inputs
self.callbacks = callbacks
self.tags = tags
self.metadata = metadata
self.run_name = run_name
self.run_id = run_id
self.include_run_info = include_run_info
self.yield_actions = yield_actions
self.reset()
_inputs: Dict[str, str]
callbacks: Callbacks
tags: Optional[list[str]]
metadata: Optional[Dict[str, Any]]
run_name: Optional[str]
run_id: Optional[UUID]
include_run_info: bool
yield_actions: bool
@property
def inputs(self) -> Dict[str, str]:
return self._inputs
@inputs.setter
def inputs(self, inputs: Any) -> None:
self._inputs = self.agent_executor.prep_inputs(inputs)
@property
def agent_executor(self) -> AgentExecutor:
return self._agent_executor
@agent_executor.setter
def agent_executor(self, agent_executor: AgentExecutor) -> None:
self._agent_executor = agent_executor
# force re-prep inputs in case agent_executor's prep_inputs fn changed
self.inputs = self.inputs
@property
def name_to_tool_map(self) -> Dict[str, BaseTool]:
return {tool.name: tool for tool in self.agent_executor.tools}
@property
def color_mapping(self) -> Dict[str, str]:
return get_color_mapping(
[tool.name for tool in self.agent_executor.tools],
excluded_colors=["green", "red"],
)
def reset(self) -> None:
"""
Reset the iterator to its initial state, clearing intermediate steps,
iterations, and time elapsed.
"""
logger.debug("(Re)setting AgentExecutorIterator to fresh state")
self.intermediate_steps: list[tuple[AgentAction, str]] = []
self.iterations = 0
# maybe better to start these on the first __anext__ call?
self.time_elapsed = 0.0
self.start_time = time.time()
def update_iterations(self) -> None:
"""
Increment the number of iterations and update the time elapsed.
"""
self.iterations += 1
self.time_elapsed = time.time() - self.start_time
logger.debug(
f"Agent Iterations: {self.iterations} ({self.time_elapsed:.2f}s elapsed)"
)
def make_final_outputs(
self,
outputs: Dict[str, Any],
run_manager: Union[CallbackManagerForChainRun, AsyncCallbackManagerForChainRun],
) -> AddableDict:
# have access to intermediate steps by design in iterator,
# so return only outputs may as well always be true.
prepared_outputs = AddableDict(
self.agent_executor.prep_outputs(
self.inputs, outputs, return_only_outputs=True
)
)
if self.include_run_info:
prepared_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
return prepared_outputs
def __iter__(self: "AgentExecutorIterator") -> Iterator[AddableDict]:
logger.debug("Initialising AgentExecutorIterator")
self.reset()
callback_manager = CallbackManager.configure(
self.callbacks,
self.agent_executor.callbacks,
self.agent_executor.verbose,
self.tags,
self.agent_executor.tags,
self.metadata,
self.agent_executor.metadata,
)
run_manager = callback_manager.on_chain_start(
dumpd(self.agent_executor),
self.inputs,
self.run_id,
name=self.run_name,
)
try:
while self.agent_executor._should_continue(
self.iterations, self.time_elapsed
):
# take the next step: this plans next action, executes it,
# yielding action and observation as they are generated
next_step_seq: NextStepOutput = []
for chunk in self.agent_executor._iter_next_step(
self.name_to_tool_map,
self.color_mapping,
self.inputs,
self.intermediate_steps,
run_manager,
):
next_step_seq.append(chunk)
# if we're yielding actions, yield them as they come
# do not yield AgentFinish, which will be handled below
if self.yield_actions:
if isinstance(chunk, AgentAction):
yield AddableDict(actions=[chunk], messages=chunk.messages)
elif isinstance(chunk, AgentStep):
yield AddableDict(steps=[chunk], messages=chunk.messages)
# convert iterator output to format handled by _process_next_step_output
next_step = self.agent_executor._consume_next_step(next_step_seq)
# update iterations and time elapsed
self.update_iterations()
# decide if this is the final output
output = self._process_next_step_output(next_step, run_manager)
is_final = "intermediate_step" not in output
# yield the final output always
# for backwards compat, yield int. output if not yielding actions
if not self.yield_actions or is_final:
yield output
# if final output reached, stop iteration
if is_final:
return
except BaseException as e:
run_manager.on_chain_error(e)
raise
# if we got here means we exhausted iterations or time
yield self._stop(run_manager)
async def __aiter__(self) -> AsyncIterator[AddableDict]:
"""
N.B. __aiter__ must be a normal method, so need to initialize async run manager
on first __anext__ call where we can await it
"""
logger.debug("Initialising AgentExecutorIterator (async)")
self.reset()
callback_manager = AsyncCallbackManager.configure(
self.callbacks,
self.agent_executor.callbacks,
self.agent_executor.verbose,
self.tags,
self.agent_executor.tags,
self.metadata,
self.agent_executor.metadata,
)
run_manager = await callback_manager.on_chain_start(
dumpd(self.agent_executor),
self.inputs,
self.run_id,
name=self.run_name,
)
try:
async with asyncio_timeout(self.agent_executor.max_execution_time):
while self.agent_executor._should_continue(
self.iterations, self.time_elapsed
):
# take the next step: this plans next action, executes it,
# yielding action and observation as they are generated
next_step_seq: NextStepOutput = []
async for chunk in self.agent_executor._aiter_next_step(
self.name_to_tool_map,
self.color_mapping,
self.inputs,
self.intermediate_steps,
run_manager,
):
next_step_seq.append(chunk)
# if we're yielding actions, yield them as they come
# do not yield AgentFinish, which will be handled below
if self.yield_actions:
if isinstance(chunk, AgentAction):
yield AddableDict(
actions=[chunk], messages=chunk.messages
)
elif isinstance(chunk, AgentStep):
yield AddableDict(
steps=[chunk], messages=chunk.messages
)
# convert iterator output to format handled by _process_next_step
next_step = self.agent_executor._consume_next_step(next_step_seq)
# update iterations and time elapsed
self.update_iterations()
# decide if this is the final output
output = await self._aprocess_next_step_output(
next_step, run_manager
)
is_final = "intermediate_step" not in output
# yield the final output always
# for backwards compat, yield int. output if not yielding actions
if not self.yield_actions or is_final:
yield output
# if final output reached, stop iteration
if is_final:
return
except (TimeoutError, asyncio.TimeoutError):
yield await self._astop(run_manager)
return
except BaseException as e:
await run_manager.on_chain_error(e)
raise
# if we got here means we exhausted iterations or time
yield await self._astop(run_manager)
def _process_next_step_output(
self,
next_step_output: Union[AgentFinish, List[Tuple[AgentAction, str]]],
run_manager: CallbackManagerForChainRun,
) -> AddableDict:
"""
Process the output of the next step,
handling AgentFinish and tool return cases.
"""
logger.debug("Processing output of Agent loop step")
if isinstance(next_step_output, AgentFinish):
logger.debug(
"Hit AgentFinish: _return -> on_chain_end -> run final output logic"
)
return self._return(next_step_output, run_manager=run_manager)
self.intermediate_steps.extend(next_step_output)
logger.debug("Updated intermediate_steps with step output")
# Check for tool return
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
tool_return = self.agent_executor._get_tool_return(next_step_action)
if tool_return is not None:
return self._return(tool_return, run_manager=run_manager)
return AddableDict(intermediate_step=next_step_output)
async def _aprocess_next_step_output(
self,
next_step_output: Union[AgentFinish, List[Tuple[AgentAction, str]]],
run_manager: AsyncCallbackManagerForChainRun,
) -> AddableDict:
"""
Process the output of the next async step,
handling AgentFinish and tool return cases.
"""
logger.debug("Processing output of async Agent loop step")
if isinstance(next_step_output, AgentFinish):
logger.debug(
"Hit AgentFinish: _areturn -> on_chain_end -> run final output logic"
)
return await self._areturn(next_step_output, run_manager=run_manager)
self.intermediate_steps.extend(next_step_output)
logger.debug("Updated intermediate_steps with step output")
# Check for tool return
if len(next_step_output) == 1:
next_step_action = next_step_output[0]
tool_return = self.agent_executor._get_tool_return(next_step_action)
if tool_return is not None:
return await self._areturn(tool_return, run_manager=run_manager)
return AddableDict(intermediate_step=next_step_output)
def _stop(self, run_manager: CallbackManagerForChainRun) -> AddableDict:
"""
Stop the iterator and raise a StopIteration exception with the stopped response.
"""
logger.warning("Stopping agent prematurely due to triggering stop condition")
# this manually constructs agent finish with output key
output = self.agent_executor.agent.return_stopped_response(
self.agent_executor.early_stopping_method,
self.intermediate_steps,
**self.inputs,
)
return self._return(output, run_manager=run_manager)
async def _astop(self, run_manager: AsyncCallbackManagerForChainRun) -> AddableDict:
"""
Stop the async iterator and raise a StopAsyncIteration exception with
the stopped response.
"""
logger.warning("Stopping agent prematurely due to triggering stop condition")
output = self.agent_executor.agent.return_stopped_response(
self.agent_executor.early_stopping_method,
self.intermediate_steps,
**self.inputs,
)
return await self._areturn(output, run_manager=run_manager)
def _return(
self, output: AgentFinish, run_manager: CallbackManagerForChainRun
) -> AddableDict:
"""
Return the final output of the iterator.
"""
returned_output = self.agent_executor._return(
output, self.intermediate_steps, run_manager=run_manager
)
returned_output["messages"] = output.messages
run_manager.on_chain_end(returned_output)
return self.make_final_outputs(returned_output, run_manager)
async def _areturn(
self, output: AgentFinish, run_manager: AsyncCallbackManagerForChainRun
) -> AddableDict:
"""
Return the final output of the async iterator.
"""
returned_output = await self.agent_executor._areturn(
output, self.intermediate_steps, run_manager=run_manager
)
returned_output["messages"] = output.messages
await run_manager.on_chain_end(returned_output)
return self.make_final_outputs(returned_output, run_manager)
|